A NONSPECTRAL DENSE BANACH SUBALGEBRA
OF THE IRRATIONAL ROTATION ALGEBRA

LARRY B. SCHWEITZER

(Communicated by Palle E. T. Jorgensen)

Abstract. We give an example of a dense, simple, unital Banach subalgebra \(A \)
of the irrational rotation \(C^* \)-algebra \(B \), such that \(A \) is not a spectral subalgebra of \(B \). This answers a question posed by T. W. Palmer (Spectral algebras, Rocky Mountain J. Math. 22 (1992), 293–328).

If \(A \) is a subalgebra of an algebra \(B \) (both algebras over the complex numbers), we say that \(A \) is a spectral subalgebra of \(B \) if the quasi-invertible elements of \(A \) are precisely the quasi-invertible elements of \(B \) which lie in \(A \). In the language of [3], this is equivalent to saying that \(A \) is a spectral invariant subalgebra of \(B \).

There are many known examples of dense unital Banach subalgebras of \(C^* \)-algebras which are not spectral. For example, see Example 3.1 of [3]. The example we give here is of interest because the Banach algebra is simple and, thus, answers Question 5.12 of [1] in the negative.

Recall that the irrational rotation algebra associated with an irrational real number \(\theta \) is the \(C^* \)-crossed product of the integers \(\mathbb{Z} \) with the commutative \(C^* \)-algebra of continuous functions on the circle \(C(\mathbb{T}) \), where \(n \in \mathbb{Z} \) acts via \(\alpha_n(\phi)(z) = \phi(z - n\theta) \), for \(\phi \in C(\mathbb{T}) \) and \(z \in \mathbb{T} \). Let \(B = \mathbb{Z} \times C(\mathbb{T}) \) denote this crossed product.

Let \(A \) be the set of functions \(F \) from \(\mathbb{Z} \) to \(C(\mathbb{T}) \) which satisfy the integrability condition
\[
\|F\|_A = \sum_{n \in \mathbb{Z}} e^{\|n\|} \|F(n)\|_{C(\mathbb{T})} < \infty,
\]
where \(\| \|_\infty \) denotes the sup norm on \(C(\mathbb{T}) \). Then \(A \) is complete for the norm \(\|
\|_A \) and is a Banach algebra. The algebra \(A \) is contained in \(L^1(\mathbb{Z}, C(\mathbb{T})) \) with dense and continuous inclusion and, hence, is contained in \(B \) with dense and continuous inclusion. Recall that the multiplication (in both \(A \) and \(B \)) is given by
\[
F * G(n, z) = \sum_{m \in \mathbb{Z}} F(n, z)G(n - m, z - m\theta), \quad F, G \in A, n \in \mathbb{Z}, z \in \mathbb{T}.
\]
Let \(u_n = \delta_n \otimes 1 \in A \) denote the delta function at \(n \in \mathbb{Z} \) tensored with the identity in \(C(\mathbb{T}) \). Then \(u_0 \) is the unit in both \(A \) and \(B \).

Theorem 1. The Banach algebra \(A \) is simple.

Proof. We imitate the argument of [2]. Define a continuous linear map \(P: A \to C(\mathbb{T}) \subseteq A \) by \(P(F) = F(0) \). Note that \(\|P(F)\|_A \leq \|F\|_A \) for \(F \in A \). Let \(J \) be a closed two-sided ideal in \(A \), which is not equal to \(A \). Since \(\mathbb{Z} \) acts ergodically on \(\mathbb{T} \), we know that \(C(\mathbb{T}) \) has no nontrivial closed \(\mathbb{Z} \)-invariant ideals. Hence, \(J \cap C(\mathbb{T}) = 0 \).

We show that \(P(J) = 0 \). It suffices to show that \(P(J) \subseteq J \). Let \(\epsilon > 0 \) and \(F \in A \). Let \(N \) be a sufficiently large integer for which

\[
\sum_{|n| > N} e^{\epsilon n} \|F(n)\|_\infty < \epsilon.
\]

Define \(F_1 \in A \) by \(F_1(n) = 0 \) if \(|n| > N \), and \(F_1(n) = F(n) \) if \(|n| \leq N \). By the proof of Lemma 6 of [2], there exists unimodular functions \(\theta_1, \ldots, \theta_M \in C(\mathbb{T}) \) such that

\[
\sum_{i=1}^{M} \theta_i^n F_1 \theta_n.
\]

(Here unimodular means that \(|\theta_i(z)| = 1 \) for each \(z \in \mathbb{T} \) and \(i = 1, \ldots, M \).) Hence,

\[
\left\|P(F) - \frac{1}{M} \sum_{n=1}^{M} \theta_n^* F_1 \theta_n\right\|_A \leq \|P(F - F_1)\|_A + \|F - F_1\|_A < 2\epsilon.
\]

Now if \(F \in J \), \((*) \) shows that \(P(F) \) can be approximated arbitrarily closely by elements of \(J \). Since \(J \) is closed, this shows that \(P(F) \in J \). Hence, \(P(J) \subseteq J \) and \(P(J) = 0 \).

If \(P(F u_n) = 0 \) for all \(n \), then \(F(n) = 0 \) for all \(n \) and so \(F = 0 \). Since \(J \) is a two-sided ideal and \(P(J) = 0 \), we have \(P(J u_n) = 0 \) for all \(n \). Hence, \(J = 0 \) and \(A \) is simple. \(\square \)

Theorem 2. The Banach algebra \(A \) is not a spectral subalgebra of \(B \).

Proof. We construct an algebraically irreducible \(A \)-module which is not contained in any \(* \)-representation of \(B \) on a Hilbert space. By Corollary 1.5 of [3], it will follow that \(A \) is not a spectral subalgebra of \(B \).

Let \(E \) be the Banach \(A \)-module \(C(\mathbb{T}) \) with sup norm and with (continuous) action of \(A \) given by

\[
(F \varphi)(z) = \sum_n F(n, z) e^{n \varphi(z - n\theta)}, \quad \varphi \in E, F \in A, z \in \mathbb{T}.
\]

We show that \(E \) is in fact algebraically irreducible. Let \(\varphi \in E \) be not identically equal to zero. Since the complex conjugate of \(\varphi \) is in \(A \), the algebraic span \(A \varphi \) contains \(|\varphi|^2 \), which we denote by \(\psi \). Note \(u_n \psi(z) = e^{n \psi}(z - n\theta) \). Since \(\theta \) is irrational and \(\mathbb{T} \) is compact, there exists finitely many \(n_1, \ldots, n_k \in \mathbb{Z} \) such that the sum of \(u_n \psi \) from \(i = 1 \) to \(k \) never vanishes on \(\mathbb{T} \). If \(\chi \) is this sum, then \(1/\chi \) is in \(C(\mathbb{T}) \subseteq A \), so \(1 \in A \varphi \) and, hence, \(E = A \varphi \). This proves that \(E \) is algebraically irreducible.
It remains to show that no *-representation of B on a Hilbert space contains E. But the action of Z on $1 \in E$ is given by $u^n 1 = e^n 1$. Clearly the Hilbert space could not have a unitary, or even isometric, action of Z. □

REFERENCES

3. L. B. Schweitzer, A short proof that $M_n(A)$ is local if A is local and Fréchet, Internat. J. Math. 3 (1992), 581–589. MR 93i:46082

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALGARY, ALBERTA, CANADA T2N 1N4

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, BERKELEY, CALIFORNIA 94720

Current address: Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia, Canada V8W 3P4

E-mail address: lschweit@alpha.math.uvic.ca