## An operator-valued Yeh-Wiener integral and a Kac-Feynman Wiener integral equation

HTML articles powered by AMS MathViewer

- by Chull Park and David Skoug
- Proc. Amer. Math. Soc.
**120**(1994), 929-942 - DOI: https://doi.org/10.1090/S0002-9939-1994-1213867-1
- PDF | Request permission

## Abstract:

Let $C[0,T]$ denote Wiener space, i.e., the space of all continuous functions $\eta (t)$ on $[0,T]$ such that $\eta (0) = 0$. For $Q = [0,S] \times [0,T]$ let $C(Q)$ denote Yeh-Wiener space, i.e., the space of all $\mathbb {R}$-valued continuous functions $x(s,t)$ on $Q$ such that $x(0,t) = x(s,0) = 0$ for all $(s,t)$ in $Q$. For $h \in {L_2}(Q)$ let $Z(x;s,t)$ be the Gaussian process defined by the stochastic integral \[ Z(x;s,t) = \int _0^t {\int _0^s {h(u,v)dx(u,v).} } \] Then for appropriate functionals $F$ and $\psi$ we show that the operator-valued function space integral \[ (I_\lambda ^h(F)\psi )(\eta ( \cdot )) = {E_x}[F({\lambda ^{ - 1/2}}Z(x; \cdot , \cdot ) + \eta ( \cdot ))\psi ({\lambda ^{ - 1/2}}Z(x;S, \cdot ) + \eta ( \cdot ))]\] is the unique solution of a Kac-Feynman Wiener integral equation. We also use this integral equation to evaluate various Yeh-Wiener integrals.## References

- R. H. Cameron and D. A. Storvick,
*An operator valued function space integral and a related integral equation*, J. Math. Mech.**18**(1968), 517–552. MR**0236347**, DOI 10.1512/iumj.1969.18.18041 - R. H. Cameron and D. A. Storvick,
*An integral equation related to the Schroedinger equation with an application to integration in function space*, Problems in analysis (Sympos. in honor of Salomon Bochner, Princeton Univ., Princeton, N.J., 1969) Princeton Univ. Press, Princeton, N.J., 1970, pp. 175–193. MR**0348071**
—, - R. H. Cameron and D. A. Storvick,
*An operator valued Yeh-Wiener integral, and a Wiener integral equation*, Indiana Univ. Math. J.**25**(1976), no. 3, 235–258. MR**399403**, DOI 10.1512/iumj.1976.25.25020 - Dong Myung Chung, Chull Park, and David Skoug,
*Operator-valued Feynman integrals via conditional Feynman integrals*, Pacific J. Math.**146**(1990), no. 1, 21–42. MR**1073518** - J. L. Doob,
*Stochastic processes*, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1990. Reprint of the 1953 original; A Wiley-Interscience Publication. MR**1038526** - Takeyuki Hida,
*Brownian motion*, Applications of Mathematics, vol. 11, Springer-Verlag, New York-Berlin, 1980. Translated from the Japanese by the author and T. P. Speed. MR**562914** - G. W. Johnson and D. L. Skoug,
*A Banach algebra of Feynman integrable functionals with application to an integral equation formally equivalent to Schroedinger’s equation*, J. Functional Analysis**12**(1973), 129–152. MR**0348072**, DOI 10.1016/0022-1236(73)90019-0 - Chull Park,
*On Fredholm transformations in Yeh-Wiener space*, Pacific J. Math.**40**(1972), 173–195. MR**304604** - Chull Park and David Skoug,
*A simple formula for conditional Wiener integrals with applications*, Pacific J. Math.**135**(1988), no. 2, 381–394. MR**968620** - Chull Park and David Skoug,
*Conditional Yeh-Wiener integrals with vector-valued conditioning functions*, Proc. Amer. Math. Soc.**105**(1989), no. 2, 450–461. MR**960650**, DOI 10.1090/S0002-9939-1989-0960650-6 - J. Yeh,
*Wiener measure in a space of functions of two variables*, Trans. Amer. Math. Soc.**95**(1960), 433–450. MR**125433**, DOI 10.1090/S0002-9947-1960-0125433-1
—,

*An operator valued function space integral applied to functions of class*${L_2}$, J. Math. Anal. Appl.

**42**(1973), 330-373.

*Stochastic processes and the Wiener integral*, Marcel Dekker, New York, 1983.

## Bibliographic Information

- © Copyright 1994 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**120**(1994), 929-942 - MSC: Primary 28C20; Secondary 47N30, 60J65
- DOI: https://doi.org/10.1090/S0002-9939-1994-1213867-1
- MathSciNet review: 1213867