Comparison of the lengths of the continued fractions of $\sqrt D$ and $\frac 12(1+\sqrt D)$
HTML articles powered by AMS MathViewer
- by Kenneth S. Williams and Nicholas Buck
- Proc. Amer. Math. Soc. 120 (1994), 995-1002
- DOI: https://doi.org/10.1090/S0002-9939-1994-1169053-7
- PDF | Request permission
Abstract:
Let $D$ denote a positive nonsquare integer such that $D \equiv 1 (\bmod 4)$. Let $l(\sqrt D )$ (resp. $l(\tfrac {1} {2}(1 + \sqrt D ))$) denote the length of the period of the continued fraction expansion of $\sqrt D$ (resp. $\tfrac {1} {2}(1 + \sqrt D ))$). Recently Ishii, Kaplan, and Williams (On Eisenstein’s problem, Acta Arith. 54 (1990), 323-345) established inequalities between $l(\sqrt D )$ and $l(\tfrac {1} {2}(1 + \sqrt D ))$. In this note it is shown that these inequalities are best possible in a strong sense.References
- I. G. deMille, The continued fraction for certain $(1 + \sqrt D )/2$ with applications to units and classnumbers, M. Sc. thesis (Supervisor Dr. K. S. Williams), Carleton University, Ottawa, Ontario, Canada, 1988.
- F. Halter-Koch, Einige periodische Kettenbruchentwicklungen und Grundeinheiten quadratischer Ordnungen, Abh. Math. Sem. Univ. Hamburg 59 (1989), 157–169 (German). MR 1049893, DOI 10.1007/BF02942326
- Noburo Ishii, Pierre Kaplan, and Kenneth S. Williams, On Eisenstein’s problem, Acta Arith. 54 (1990), no. 4, 323–345. MR 1058895, DOI 10.4064/aa-54-4-323-345
- Claude Levesque and Georges Rhin, A few classes of periodic continued fractions, Utilitas Math. 30 (1986), 79–107. MR 864813
- Claude Levesque, Continued fraction expansions and fundamental units, J. Math. Phys. Sci. 22 (1988), no. 1, 11–44. MR 940385
- Oskar Perron, Die Lehre von den Kettenbrüchen. Bd I. Elementare Kettenbrüche, B. G. Teubner Verlagsgesellschaft, Stuttgart, 1954 (German). 3te Aufl. MR 0064172
- H. C. Williams, A note on the period length of the continued fraction expansion of certain $\sqrt D$, Utilitas Math. 28 (1985), 201–209. MR 821957
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 120 (1994), 995-1002
- MSC: Primary 11J70
- DOI: https://doi.org/10.1090/S0002-9939-1994-1169053-7
- MathSciNet review: 1169053