On the isometries of $H^ \infty _ E(B)$
HTML articles powered by AMS MathViewer
- by Yasuo Matsugu and Takahiko Yamada
- Proc. Amer. Math. Soc. 120 (1994), 1107-1112
- DOI: https://doi.org/10.1090/S0002-9939-1994-1169883-1
- PDF | Request permission
Abstract:
Let $E$ be a complex Banach space on which all the multipliers are trivial. Let $H_E^\infty (B)$ denote the Banach space of $E$-valued bounded holomorphic functions on the open unit ball $B$ of ${{\mathbf {C}}^n}$. In this paper we prove that every linear isometry $T$ of $H_E^\infty (B)$ onto itself is of the form $(TF)(z) = \mathfrak {T}F(\varphi (z))$ for all $F \in H_E^\infty (B),\;z \in B$, where $\mathfrak {T}$ is a linear isometry of $E$ onto itself and $\varphi$ is a biholomorphic map of $B$.References
- P. R. Ahern and Robert Schneider, Isometries of $H^{\infty }$, Duke Math. J. 42 (1975), 321–326. MR 447626, DOI 10.1215/S0012-7094-75-04230-1
- Ehrhard Behrends, $M$-structure and the Banach-Stone theorem, Lecture Notes in Mathematics, vol. 736, Springer, Berlin, 1979. MR 547509, DOI 10.1007/BFb0063153
- Michael Cambern and Krzysztof Jarosz, Multipliers and isometries in $H^\infty _E$, Bull. London Math. Soc. 22 (1990), no. 5, 463–466. MR 1082016, DOI 10.1112/blms/22.5.463
- Joseph Diestel, Geometry of Banach spaces—selected topics, Lecture Notes in Mathematics, Vol. 485, Springer-Verlag, Berlin-New York, 1975. MR 0461094, DOI 10.1007/BFb0082079
- Einar Hille and Ralph S. Phillips, Functional analysis and semi-groups, American Mathematical Society Colloquium Publications, Vol. 31, American Mathematical Society, Providence, R.I., 1957. rev. ed. MR 0089373
- Krzysztof Jarosz, Perturbations of Banach algebras, Lecture Notes in Mathematics, vol. 1120, Springer-Verlag, Berlin, 1985. MR 788884, DOI 10.1007/BFb0076885
- Pei-Kee Lin, The isometries of $H^\infty (E)$, Pacific J. Math. 143 (1990), no. 1, 69–77. MR 1047402
- Walter Rudin, Function theory in the unit ball of $\textbf {C}^{n}$, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 241, Springer-Verlag, New York-Berlin, 1980. MR 601594, DOI 10.1007/978-1-4613-8098-6
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 120 (1994), 1107-1112
- MSC: Primary 46E40; Secondary 47B38
- DOI: https://doi.org/10.1090/S0002-9939-1994-1169883-1
- MathSciNet review: 1169883