COUNTABLE METACOMPACTNESS IN Ψ-SPACES

PAUL J. SZEPTYCKI

(Communicated by Andreas R. Blass)

Abstract. We prove under a variety of assumptions including $c = \aleph_2$ that, for every maximal almost disjoint family \mathcal{A} of countable subsets of ω_1, $\Psi(\mathcal{A})$ is not countably metacompact. In addition, a first countable, countably metacompact, regular space with a closed discrete set which is not a G_δ is constructed from the mutually consistent assumptions that $b = \omega_1$ and there can exist a Q-set.

1. Introduction

Recall that a space is perfect if each closed subset is a G_δ. The easy but important result that all perfect spaces are countably metacompact raises the natural question: how perfect are countably metacompact spaces? In [Bu2] Burke proved that under PMEA closed discrete sets are G_δ's in first countable countably metacompact T_1 spaces.

Given a maximal almost disjoint (mad) family $\mathcal{A} \subseteq [\omega_1]^\omega$ we define the space $\Psi(\mathcal{A})$ as: $\omega_1 \cup \mathcal{A}$ is the underlying set. Every point in ω_1 is isolated while a typical neighborhood of an $a \in \mathcal{A}$ looks like $\{a\} \cup a^{-1}y$ where y is a finite subset of a. Then $\Psi(\mathcal{A})$ is a regular, first countable space and \mathcal{A} is a closed discrete set which is not a G_δ. So if there exists a mad \mathcal{A} such that $\Psi(\mathcal{A})$ is countably metacompact, there would be a nice counterexample to the PMEA result. In [Bu1] Burke raised this question and answered it negatively under the assumption $a = c$. In this note we again answer the question in the negative under a number of different assumptions, including $c = \aleph_2$.

There are only two consistent counterexamples to Burke's PMEA theorem in the literature. In [Sh] Shelah forced a normal countably metacompact ladder system space with a closed discrete set which is not a G_δ, while in [BBu] Balogh and Burke constructed a regular counterexample in a ccc forcing extension. Assuming $b = \omega_1$ and there can exist a Q-set, we construct a regular first countable countably metacompact space with a closed discrete set which is not a G_δ. This is the only known regular counterexample to the PMEA result which is not a forcing construction.

1991 Mathematics Subject Classification. Primary 03E05, 54D18, 54G20.

Key words and phrases. Countably metacompact, perfect, mad, unbounded, Q-set.

©1994 American Mathematical Society

0002-9939/94 $1.00 + .25$ per page

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
1242 P. J. SZEPTYCKI

Our terminology and notation are fairly standard. \([\omega_1]^\omega\) = the collection of countably infinite subsets of \(\omega_1\). \(\mathcal{A}\) indicates an infinite mad family on \([\omega_1]^\omega\). \(a\) is defined as the minimal cardinality of an infinite mad family on \(\omega\).

For \(f, g \in \omega_1^\omega\), \(f \preceq g\) means \(g(n) > f(n)\) for at most finitely many \(n\). \(b\) is the minimal cardinality of an unbounded family in \((\omega_1^\omega, \preceq^*)\), and \(\theta\) is the minimal cardinality of a dominating family in \((\omega_1^\omega, \preceq^*\). \(X \subseteq Y\) means that \(X\setminus Y\) is finite. Given \(Y \subseteq \omega_1\), \(\mathcal{A} \upharpoonright Y = \{a \cap Y : a \in \mathcal{A}\text{ s.t. } a \cap Y = \aleph_0\}\) and \(\Psi(\mathcal{A} \upharpoonright Y)\) is the subspace of \(\Psi(\mathcal{A})\) determined by \(Y \cup (\mathcal{A} \upharpoonright Y)\). For more on \(b, \delta, a,\) and \(\Psi(\mathcal{A})\) see [vD].

2. Preliminaries

We will use the following formulation of countable metacompactness.

Definition 2.1. A space \(X\) is countably meta\-compact iff for every decreasing sequence \(\{D_n : n < \omega\}\) of closed subsets of \(X\) such that \(\bigcap_{n<\omega} D_n = \emptyset\) there exist open \(U_n \supseteq D_n\) such that \(\bigcap_{n<\omega} U_n = \emptyset\).

The following lemma follows directly from the definitions.

Lemma 2.2. Given a mad \(\mathcal{A} \subseteq [\omega_1]^\omega\), \(\Psi(\mathcal{A})\) is countably metacompact iff for every partition \(\{\mathcal{A}_n : n \in \omega\}\) of \(\mathcal{A}\) there are \(X_n \subseteq \omega_1\) such that \(\forall n \forall m \geq n \forall a \in \mathcal{A}_m\ (a \subseteq^* X_n\) and \(\bigcap_{n<\omega} X_n = \emptyset\).

Theorem 2.3. Suppose \(\mathcal{C}\) is regular. Given a mad \(\mathcal{A} \subseteq [\omega_1]^\omega\), if \(\exists Z \in [\omega_1]^\omega\) such that \(|\mathcal{A} \upharpoonright Y| = \mathcal{C}\) for each \(Y \in [Z]^\omega\), then \(\Psi(\mathcal{A})\) is not countably metacompact.

Proof. Enumerate \(\{x \in [\omega_1]^\omega : |\mathcal{A} \upharpoonright x| = \mathcal{C}\}\) as \(\{x_\alpha : \alpha \leq \mathcal{C}\}\). Notice that for each \(X \in [\omega_1]^\omega\) if \(|\mathcal{A} \upharpoonright X| = \mathcal{C}\) then there is an \(x \in [X]^\omega\) s.t. \(|\mathcal{A} \upharpoonright x| = \mathcal{C}\).

For each \(n \in \omega\) we construct \(\mathcal{A}_n \subseteq \mathcal{A}\) inductively on \(\alpha \leq \mathcal{C}\) as follows. Fix \(a_n \in \mathcal{A}\) such that \(\forall n \neq m \ a_n \neq a_m\), and \(\forall n \ |a_n \cap x_\alpha| = \aleph_0\). Let \(\mathcal{A}_0^n = \{a_n\}\).

Having defined \(\mathcal{A}_n^\beta\) for all \(\beta \leq \alpha\) s.t.

(i) \(|\mathcal{A}_n^\beta| = |\beta|\),
(ii) \(\forall n \neq m \ \mathcal{A}_n^\beta \cap \mathcal{A}_m^\beta = \emptyset\),
(iii) \(\forall \beta \in \alpha \exists a \in \mathcal{A}_n^\beta\ (a \cap x_\beta) = \aleph_0\).

Let \(\mathcal{A}' = \bigcup_{\beta \in \alpha} \{\mathcal{A}_n^\beta : n \in \omega, \ \beta \in \alpha\}\). For each \(n \in \omega\) choose \(a_n^\alpha \in \mathcal{A} - \mathcal{A}'\) distinct such that \(|a_n^\alpha \cap x_\alpha| = \aleph_0\). Let \(\mathcal{A}_0^n = \mathcal{A}_0^n \cup \{a_n^\alpha\}\). Finally let \(\mathcal{A}_n = \bigcup_{\alpha \in \mathcal{C}} \mathcal{A}_0^n\). Notice that if \(x \in [\omega_1]^\omega\) is such that \(|\mathcal{A} \upharpoonright x| = \mathcal{C}\) then for each \(n\) there is an \(a \in \mathcal{A}_n\) such that \(|a \cap x| = \aleph_0\). Fix \(n \in \omega\). If \(X\) is such that \(\forall m \geq n \forall a \in \mathcal{A}_m\ a \subseteq^* X\), then \(|X\setminus Z|\) is countable. Hence, the \(\mathcal{A}_n\) witness that \(\Psi(\mathcal{A})\) is not countably metacompact.

The following is a corollary to the proof of Theorem 2.3.

Corollary 2.4 (Burke). \(\mathcal{A} = \mathcal{C}\) \(\rightarrow\) \(\Psi(\mathcal{A})\) is not countably metacompact for every mad \(\mathcal{A} \subseteq [\omega_1]^\omega\).

3. Unbounded families and partitions of mad families

By Lemma 2.2, to prove that \(\Psi(\mathcal{A})\) is not countably metacompact for some mad \(\mathcal{A}\) we must exhibit a nasty (i.e., witnessing not countable metacompact-
ness) partition of \(\mathcal{A}\) into countably many pieces. We do this by indexing \(\mathcal{A}\)
with a family $\mathcal{F} \subseteq \omega_\omega$ and proving that if \mathcal{F} has certain nice properties then we can build a nasty partition for \mathcal{A}. A similar technique was used by Simon in [S] to build a Frechet space whose square is not Frechet.

Definition 3.1. Given $\mathcal{F} \subseteq \omega_\omega$, we say \mathcal{F} is fully unbounded if $\forall S \in [\mathcal{F}]^{\mathcal{F}}$ S is unbounded under \leq^*.

Recall that if $f, g \in \omega_\omega$, then $f \preceq^* g \Leftrightarrow \{n : g(n) > f(n)\}$ is finite. Clearly no family of size κ where $\kappa < b$ or κ is regular and $> c$ can be fully unbounded. However, if $b \leq \kappa \leq c$ then we have positive, consistent, and independent results.

Theorem 3.2. (i) There are fully unbounded families of size b and c.

(ii) Let $\kappa < \delta < \lambda$ be regular uncountable cardinals. Then $\text{Con}(\text{ZFC}) \rightarrow \text{Con}(\text{ZFC} + (b = \kappa) + (\delta = \lambda) \text{ and there is no fully unbounded family of size } \delta)$.

(iii) Let κ be a regular uncountable cardinal. Then $\text{Con}(\text{ZFC}) \rightarrow \text{Con}(\text{ZFC} + (b = \aleph_1) + (\delta = c = \kappa) \text{ and there is a fully unbounded family of size } \delta \text{ for each uncountable } \delta < c)$.

Proof. (i) Fix a well-ordered unbounded family of type b and a dominating family $\{f_\alpha : \alpha < \delta\}$ such that $\alpha < \beta \rightarrow f_\beta \preceq^* f_\alpha$. Then both families are fully unbounded.

(ii) We start with a model M of CH and iterate the dominating real poset along the well-founded poset $((\kappa \times \lambda, \leq), \{\alpha, \beta\} \leq (\gamma, \eta) \iff \alpha \leq \gamma \text{ and } \beta \leq \eta$. This is Hechler's model [H] for cofinally embedding $\kappa \times \lambda$ into $(\omega_\omega, \preceq^*)$. If $f_{(\alpha, \beta)}$ is the (α, β)th function added, then $(\alpha, \beta) \leq (\gamma, \eta)$ and $(\alpha, \beta) \neq (\gamma, \eta)$ implies that $f_{(\alpha, \beta)} \preceq^* f_{(\gamma, \eta)}$. Let $\mathcal{F} \subseteq \omega_\omega$ be of size δ. For each $f \in \mathcal{F}$ there is (α_f, β_f) s.t. $f \in M[G_{(\alpha_f, \beta_f)}]$. Fix α such that $\mathcal{F}^0 = \{f : \alpha_f = \alpha\}$ has size δ. Then there is a β above $\beta_f : f \in \mathcal{F}^0$. Therefore, $\mathcal{F}^0 \subseteq M[G_{(\alpha, \beta)}]$, which implies that $\mathcal{F}^0 \preceq^* f_{(\alpha, \beta)}$. Therefore, \mathcal{F} is not fully unbounded.

(iii) Start with a model of $\text{MA} + c = \kappa$ and add κ Cohen reals. It is straightforward to prove that $b = \aleph_1$, $c = \kappa$, and for any $\delta \leq \kappa$ uncountable the family consisting of the first δ Cohen reals is fully unbounded.

Theorem 3.3. Let $\mathcal{A} \subseteq [\omega_1]^{\omega_1}$ be mad such that

$$\forall x \in [\omega_1]^{\omega_1} \quad |\mathcal{A} \setminus x| \geq \aleph_0 \rightarrow |\mathcal{A} \setminus x| = |\mathcal{A}| = \kappa.$$

Assume further that there exists an $\mathcal{F} \subseteq \omega_\omega$ such that $|\mathcal{F}| = \kappa$ and \mathcal{F} is fully unbounded; then $\mathcal{W}(\mathcal{A})$ is not countably metacompact.

Proof. Fix \mathcal{F} as in the hypothesis of the theorem and index \mathcal{A} as $\{a_f : f \in \mathcal{F}\}$. For each $n, m \in \omega$, let $\mathcal{A}_m = \{a_f : f(n) = m\}$; then, for each n, $\mathcal{A} = \bigcup_{m<\omega}\mathcal{A}_m^* n$ is a partition of \mathcal{A}. Assume $\mathcal{W}(\mathcal{A})$ is countably metacompact; then for each n there is $(U^*_n)_{m<\omega} \subseteq [\omega_1]^{\omega_1}$, such that $\bigcap_{m<\omega} U^*_n = \varnothing$ and, $\forall m \forall k > m \forall a \in \mathcal{A}_k \cap a \preceq^* U^*_n$.

For each n, choose $h(n)$ inductively such that $|\bigcap_{k \leq n} \omega_1 \setminus U^*_h(k)| = \aleph_1$. Clearly this can be done since $\forall n \bigcup_{m<\omega} \omega_1 \setminus U^*_n = \omega_1$. Construct $x \in [\omega_1]^{\omega_1}$ such that $\forall k x \preceq^* \omega_1 \setminus U^*_h(k)$ and such that $|\mathcal{A} \setminus x| = |\mathcal{A}|$ as follows:

Let y_0 be a pseudo-intersection of $\{\omega_1 \setminus U^*_h(j)\}_{j<\omega}$ and pick $a_0 \in \mathcal{A}$, such that $|a_0 \cap y_0| = \aleph_0$. Having constructed $\{y_k : k < n\}$ and $\{a_k : k < n\}$, such
that

(i) $y_k \subseteq U_{h(k)}^k$,

(ii) y_k is a pseudo-intersection of $\{\omega_1 \setminus U_{h(j)}^j\}_{j<\omega}$,

(iii) $|a_k \cap y_k| = \aleph_0$, and

(iv) $i \neq k$ implies $a_i \neq a_k$,

let y_n be a pseudo-intersection of $\{\omega_1 \setminus U_{h(n)}^n\}$ such that every ordinal in y_n is above every ordinal in $\bigcup_{k<n} \alpha_k$. Pick $a_n \in \mathcal{A}$ such that $|a_n \cap y_n| = \aleph_0$. Let $x = \bigcup_{n<\omega} y_n$. Then $\forall k < \omega \ |a_k \cap x| = \aleph_0$. Therefore, $|\mathcal{A} \uparrow x| \geq \aleph_0$; hence, by assumption $|\mathcal{A} \uparrow x| = \kappa$.

Since \mathcal{F} is fully unbounded, fix $f \in \mathcal{F}$ and $n \in \omega$ such that $|a_f \cap x| = \aleph_0$ and $h(n) < f(n)$. Therefore, $a_f \subseteq U_{h(n)}^n$, contradicting that $a_f \cap x$ is infinite and $x \cap U_{h(n)}^n$ is finite.

Corollary 3.4. If $\mathfrak{c} = \aleph_2$ or $\mathfrak{b}^+ = \mathfrak{c}$, then, for each $\mathcal{A} \subseteq [\omega_1]^{\omega}$ mad, $\Psi(\mathcal{A})$ is not countably metacompact.

Proof. Let \mathcal{A} be mad. Then, since $\mathfrak{b} \leq \omega$, either $\forall Y \in [\omega_1]^{\omega} \ |\mathcal{A} \uparrow Y| = \mathfrak{c}$, or $\exists X \in [\omega_1]^{\omega}$ such that $\forall Y \in [X]^{\omega} \ |\mathcal{A} \uparrow Y| = \mathfrak{b}$. In the first case Theorem 2.3 implies $\Psi(\mathcal{A})$ is not countably metacompact, while the second case follows from Theorem 3.3 and the existence of a fully unbounded family of size \mathfrak{b}.

Theorem 3.3 suggests the following question: Does the existence of a mad family of size κ imply the existence of a fully unbounded family of size κ? Since there are no fully unbounded families of regular size $> \omega$, the question is only interesting for mad families of singular cardinality or of size $\leq \omega$.

4. A CONSISTENT COUNTEREXAMPLE

We present in this section the construction of a regular, first countable, countably metacompact space X with a closed discrete subset which is not a G_δ.

The space is constructed under the consistent assumption that $\mathfrak{b} = \omega_1$ and there exists a Q-set.

Definition 4.1. An uncountable subset of the reals is called a Q-set if every subset is a relative G_δ.

The following lemma was proved by Todorcevic (see [T, Lemma 2.5]). The set function H was used there to construct, among other things, a compact S-space from the assumption that $\mathfrak{b} = \omega_1$ and $\mathfrak{b} = \aleph_1$.

Lemma 4.2 (Todorcevic). Assume $\mathfrak{b} = \omega_1$. Fix $Z \subseteq \omega^\omega$. There is a set function $H : Z \to [Z]^{\omega}$ such that, for each $z \in Z$, $H(z)$ is either finite or a sequence converging to z with the property that, if Y and D are subsets of Z such that $Y \subseteq D$ and Y is uncountable, then $\{y \in Y : H(y) \cap D \text{ is finite}\}$ is countable.

Fix $Z \subseteq \omega^\omega$ a Q-set of size \aleph_1. We define a topology on $X = Z \times 2$ using H by letting $Z \times \{0\}$ be isolated in X, and a typical neighborhood of $(z, 1)$ looks like $\{(z, 1)\} \cup [H(z) \setminus F] \times \{0\}$ for some finite set F. Clearly X with this topology is first countable and regular. The fact that Z is a Q-set implies that the space is countably metacompact while the set function H assures that $Z \times \{1\}$ is not a G_δ in X.

Claim 4.3. X is countably metacompact.
Proof. Suppose \(Z_0 \supseteq Z_1 \supseteq \cdots \) is a sequence of subsets of \(Z \) such that \(\bigcap_{i<\omega} Z_i = \emptyset \). So \(\{Z_i \times \{1\} : i < \omega\} \) is a typical decreasing sequence of closed sets in \(X \). We use the fact that each \(Z_i \) is a \(G_\delta \) in \(Z \) to construct the open fattenings \(U_i \) of \(Z_i \times \{1\} \) with \(\bigcap_{i<\omega} U_i = \emptyset \). For each \(i < \omega \) there are Euclidean openings \(V^i(n) \supseteq Z_i \) such that \(\bigcap_{n<\omega} V^i(n) \cap Z = Z_i \). Without loss of generality we may assume that, for each \(n \) and each \(i < j \), \(V^i(n) \subseteq V^j(n) \). Then, for each \(i < \omega \), \(V^i(n) \times \{0\} \cup Z_i \times \{1\} \) is open in \(X \).

Let \(U_i = V^i(i) \times \{0\} \cup Z_i \times \{1\} \). It is straightforward to verify that \(\bigcap_{i<\omega} U_i = \emptyset \).

Claim 4.4. \(Z \times \{1\} \) is not a \(G_\delta \) in \(X \).

Proof. It clearly suffices to prove that if \(U \) is an open neighborhood of \(Z \times \{1\} \) then \(Z \times \{0\} \setminus U \) is countable.

Suppose \(Y = \{z : (z, 0) \notin U\} \) is uncountable. Fix \(D \subseteq Y \) countable dense in the Euclidean topology on \(Y \). Then by Lemma 4.2 there is a \(y \in Y \) such that \(H(y) \cap D \) is infinite. Therefore \((y, 1) \in D \times \{0\} \), which is a contradiction.

Unfortunately \(X \) is not normal. This follows from the next claim, that \(X \) is not countably paracompact, and from the fact that normal, countably metacompact spaces are countably paracompact.

Claim 4.5. \(X \) is not countably paracompact.

Proof. Let \(\{X_n : n < \omega\} \) be a decreasing sequence of subsets of \(Z \) such that in the Euclidean topology, each \(X_n \) is \(\aleph_1 \)-dense in \(Z \). Let \(A \) be countable and dense in \(Z \). Fix \(n < \omega \) and \(U_n \supseteq X_n \times \{1\} \) an open subset of \(X \). By Lemma 4.2, \(\{x \in X_n : H(x) \cap A \text{ is finite}\} \) is countable. Therefore, \(X'_n = \{x \in X_n : H(x) \cap A \text{ is infinite}\} \) is \(\aleph_1 \)-dense in \(Z \). Letting \(A' = A \times \{0\} \cap U_n \), Lemma 4.2 implies that \((X \times \{0\}) \cap \overline{U_n} \) is cocountable. Therefore, for any sequence of open sets \(U_n \supseteq X_n \times \{1\} \), \(\bigcap_{n<\omega} U_n \neq \emptyset \).

In [FM] Fleissner and Miller prove the consistency of the existence of a Q-set concentrated on a countable set. As \(b = \omega_1 \) is equivalent to the existence of an uncountable set of reals concentrated on a countable set \([R]\), \(b = \omega_1 \) and the existence of a Q-set are mutually consistent with ZFC.

References

Department of Mathematics, University of Toronto, Toronto, Ontario, Canada M5S 1A1

Current address: Department of Mathematics, Ohio University, Athens, Ohio 45701

E-mail address: szeptyck@oucsace.cs.ohiou.edu