Countable metacompactness in $\Psi$-spaces
HTML articles powered by AMS MathViewer
- by Paul Szeptycki
- Proc. Amer. Math. Soc. 120 (1994), 1241-1246
- DOI: https://doi.org/10.1090/S0002-9939-1994-1169890-9
- PDF | Request permission
Abstract:
We prove under a variety of assumptions including $\mathfrak {c} = {\aleph _2}$ that, for every maximal almost disjoint family $\mathcal {A}$ of countable subsets of ${\omega _1},\;\Psi (\mathcal {A})$ is not countably metacompact. In addition, a first countable, countably metacompact, regular space with a closed discrete set which is not a ${G_\delta }$ is constructed from the mutually consistent assumptions that $\mathfrak {b} = {\omega _1}$ and there can exist a Q-set.References
- Zoltán T. Balogh and Dennis K. Burke, A total ladder system space by ccc forcing, Proceedings of the Symposium on General Topology and Applications (Oxford, 1989), 1992, pp. 37–44. MR 1173241, DOI 10.1016/0166-8641(92)90077-D
- Dennis K. Burke, Closed discrete subsets in first countable, countably metacompact spaces, Proceedings of the Symposium on General Topology and Applications (Oxford, 1989), 1992, pp. 63–67. MR 1173244, DOI 10.1016/0166-8641(92)90080-J
- Dennis K. Burke, PMEA and first countable, countably paracompact spaces, Proc. Amer. Math. Soc. 92 (1984), no. 3, 455–460. MR 759673, DOI 10.1090/S0002-9939-1984-0759673-7
- Kenneth Kunen and Jerry E. Vaughan (eds.), Handbook of set-theoretic topology, North-Holland Publishing Co., Amsterdam, 1984. MR 776619
- William G. Fleissner and Arnold W. Miller, On $Q$ sets, Proc. Amer. Math. Soc. 78 (1980), no. 2, 280–284. MR 550513, DOI 10.1090/S0002-9939-1980-0550513-4
- Stephen H. Hechler, On the existence of certain cofinal subsets of $^{\omega }\omega$, Axiomatic set theory (Proc. Sympos. Pure Math., Vol. XIII, Part II, Univ. California, Los Angeles, Calif., 1967) Amer. Math. Soc., Providence, R.I., 1974, pp. 155–173. MR 0360266
- Fritz Rothberger, Sur les familles indénombrables de suites de nombres naturels et les problèmes concernant la propriété $C$, Proc. Cambridge Philos. Soc. 37 (1941), 109–126 (French). MR 4281, DOI 10.1017/S0305004100021617
- Petr Simon, A compact Fréchet space whose square is not Fréchet, Comment. Math. Univ. Carolin. 21 (1980), no. 4, 749–753. MR 597764
- S. Shelah, A consistent counterexample in the theory of collectionwise Hausdorff spaces, Israel J. Math. 65 (1989), no. 2, 219–224. MR 998672, DOI 10.1007/BF02764862
- Stevo Todorčević, Partition problems in topology, Contemporary Mathematics, vol. 84, American Mathematical Society, Providence, RI, 1989. MR 980949, DOI 10.1090/conm/084
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 120 (1994), 1241-1246
- MSC: Primary 54D15; Secondary 03E05, 04A20, 54G20
- DOI: https://doi.org/10.1090/S0002-9939-1994-1169890-9
- MathSciNet review: 1169890