Hypersurfaces with constant mean curvature in spheres
HTML articles powered by AMS MathViewer
- by Hilário Alencar and Manfredo do Carmo
- Proc. Amer. Math. Soc. 120 (1994), 1223-1229
- DOI: https://doi.org/10.1090/S0002-9939-1994-1172943-2
- PDF | Request permission
Abstract:
Let ${M^n}$ be a compact hypersurface of a sphere with constant mean curvature $H$. We introduce a tensor $\phi$, related to $H$ and to the second fundamental form, and show that if ${\left | \phi \right |^2} \leqslant {B_H}$, where ${B_H} \ne 0$ is a number depending only on $H$ and $n$, then either ${\left | \phi \right |^2} \equiv 0$ or ${\left | \phi \right |^2} \equiv {B_H}$. We also characterize all ${M^n}$ with ${\left | \phi \right |^2} \equiv {B_H}$.References
- Sebastião C. de Almeida and Fabiano G. B. Brito, Closed $3$-dimensional hypersurfaces with constant mean curvature and constant scalar curvature, Duke Math. J. 61 (1990), no. 1, 195–206. MR 1068385, DOI 10.1215/S0012-7094-90-06109-5
- M. do Carmo and M. Dajczer, Rotation hypersurfaces in spaces of constant curvature, Trans. Amer. Math. Soc. 277 (1983), no. 2, 685–709. MR 694383, DOI 10.1090/S0002-9947-1983-0694383-X
- Shiu Yuen Cheng and Shing Tung Yau, Hypersurfaces with constant scalar curvature, Math. Ann. 225 (1977), no. 3, 195–204. MR 431043, DOI 10.1007/BF01425237
- S. S. Chern, M. do Carmo, and S. Kobayashi, Minimal submanifolds of a sphere with second fundamental form of constant length, Functional Analysis and Related Fields (Proc. Conf. for M. Stone, Univ. Chicago, Chicago, Ill., 1968) Springer, New York, 1970, pp. 59–75. MR 0273546
- H. Blaine Lawson Jr., Local rigidity theorems for minimal hypersurfaces, Ann. of Math. (2) 89 (1969), 187–197. MR 238229, DOI 10.2307/1970816
- Katsumi Nomizu and Brian Smyth, A formula of Simons’ type and hypersurfaces with constant mean curvature, J. Differential Geometry 3 (1969), 367–377. MR 266109
- Masafumi Okumura, Hypersurfaces and a pinching problem on the second fundamental tensor, Amer. J. Math. 96 (1974), 207–213. MR 353216, DOI 10.2307/2373587
- Chia-Kuei Peng and Chuu-Lian Terng, Minimal hypersurfaces of spheres with constant scalar curvature, Seminar on minimal submanifolds, Ann. of Math. Stud., vol. 103, Princeton Univ. Press, Princeton, NJ, 1983, pp. 177–198. MR 795235 W. Santos, Submanifolds with parallel mean curvature vector in spheres, An. Acad. Bras. Ciênc. 64 (1992), 215-219.
- James Simons, Minimal varieties in riemannian manifolds, Ann. of Math. (2) 88 (1968), 62–105. MR 233295, DOI 10.2307/1970556
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 120 (1994), 1223-1229
- MSC: Primary 53C42; Secondary 53C20
- DOI: https://doi.org/10.1090/S0002-9939-1994-1172943-2
- MathSciNet review: 1172943