A cohomological class of vector bundles
HTML articles powered by AMS MathViewer
- by Rosa M. Miró-Roig
- Proc. Amer. Math. Soc. 120 (1994), 1003-1008
- DOI: https://doi.org/10.1090/S0002-9939-1994-1172953-5
- PDF | Request permission
Abstract:
The goal of this paper is to give a cohomological characterization of ${F_{n,t}}$, where ${F_{n,t}}: = \operatorname {Ker} ((n + t;n){\mathcal {O}_{{{\mathbf {P}}^n}}}( - t) \to {\mathcal {O}_{{{\mathbf {P}}^n}}})$.References
- Vincenzo Ancona and Giorgio Ottaviani, An introduction to the derived categories and the theorem of Beilinson, Atti Accad. Peloritana Pericolanti. Cl. Sci. Fis. Mat. Natur. 67 (1989), 99–110 (1991). MR 1113077
- Edoardo Ballico, Life and death of a cohomology class, J. Algebra 141 (1991), no. 2, 265–274. MR 1125695, DOI 10.1016/0021-8693(91)90231-V
- I. N. Bernšteĭn, I. M. Gel′fand, and S. I. Gel′fand, Algebraic vector bundles on $\textbf {P}^{n}$ and problems of linear algebra, Funktsional. Anal. i Prilozhen. 12 (1978), no. 3, 66–67 (Russian). MR 509387 Ph. Ellia, Ordres et cohomologie des fibrés de rang deux sur l’espace projectif, preprint, 1987.
- Lawrence Ein, An analogue of Max Noether’s theorem, Duke Math. J. 52 (1985), no. 3, 689–706. MR 808098, DOI 10.1215/S0012-7094-85-05235-4
- Mark L. Green, A new proof of the explicit Noether-Lefschetz theorem, J. Differential Geom. 27 (1988), no. 1, 155–159. MR 918461
- Juan C. Migliore and Rosa M. Miró-Roig, On $k$-Buchsbaum curves in $\textbf {P}^3$, Comm. Algebra 18 (1990), no. 8, 2403–2422. MR 1074235, DOI 10.1080/00927879008824030
- Christian Okonek, Michael Schneider, and Heinz Spindler, Vector bundles on complex projective spaces, Progress in Mathematics, vol. 3, Birkhäuser, Boston, Mass., 1980. MR 561910
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 120 (1994), 1003-1008
- MSC: Primary 14F05
- DOI: https://doi.org/10.1090/S0002-9939-1994-1172953-5
- MathSciNet review: 1172953