A disc-hull in $\textbf {C}^ 2$
HTML articles powered by AMS MathViewer
- by H. Alexander
- Proc. Amer. Math. Soc. 120 (1994), 1207-1209
- DOI: https://doi.org/10.1090/S0002-9939-1994-1179585-3
- PDF | Request permission
Abstract:
We construct a compact set in ${{\mathbf {C}}^2}$ whose disc-hull is a proper dense subset of its polynomial hull.References
- Patrick Ahern and Walter Rudin, Hulls of $3$-spheres in $\textbf {C}^3$, The Madison Symposium on Complex Analysis (Madison, WI, 1991) Contemp. Math., vol. 137, Amer. Math. Soc., Providence, RI, 1992, pp. 1–27. MR 1190966, DOI 10.1090/conm/137/1190966
- H. Alexander, B. A. Taylor, and J. L. Ullman, Areas of projections of analytic sets, Invent. Math. 16 (1972), 335–341. MR 302935, DOI 10.1007/BF01425717
- Errett Bishop, Holomorphic completions, analytic continuation, and the interpolation of semi-norms, Ann. of Math. (2) 78 (1963), 468–500. MR 155016, DOI 10.2307/1970537
- Gabriel Stolzenberg, A hull with no analytic structure, J. Math. Mech. 12 (1963), 103–111. MR 0143061
- J. Wermer, Polynomially convex hulls and analyticity, Ark. Mat. 20 (1982), no. 1, 129–135. MR 660131, DOI 10.1007/BF02390504
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 120 (1994), 1207-1209
- MSC: Primary 32E20
- DOI: https://doi.org/10.1090/S0002-9939-1994-1179585-3
- MathSciNet review: 1179585