Exact covering systems and the Gauss-Legendre multiplication formula for the gamma function
HTML articles powered by AMS MathViewer
- by John Beebee
- Proc. Amer. Math. Soc. 120 (1994), 1061-1065
- DOI: https://doi.org/10.1090/S0002-9939-1994-1180463-4
- PDF | Request permission
Abstract:
The Gauss-Legendre multiplication formula for the gamma function is ${(2\pi )^{(m - 1)/2}}{m^{1/2 - mz}}\Gamma (mz) = \Gamma (z)\Gamma (z + \tfrac {1} {m}) \cdots \Gamma (z + \tfrac {{m - 1}} {m})$. Let $\{ {a_i}(\bmod {b_i}):1 \leqslant i \leqslant m\}$ be an exact covering system with standardized offsets. Then \[ \Gamma (z) = \frac {{\Gamma (z/{b_1})}} {{{b_1}^{1 - z/{b_1}}}}\prod \limits _{i = 2}^m {\frac {{\Gamma ((z + {a_i})/{b_i})}} {{b_i^{ - z/{b_i}}\Gamma ({a_i}/{b_i})}}}.\] Conversely, if the above identity holds, then $\{ {a_i}(\bmod {b_i}):1 \leqslant i \leqslant m\}$ is an exact covering system with standardized offsets. The Gauss-Legendre multiplication formula is a special case of this identity.References
- Aviezri S. Fraenkel, A characterization of exactly covering congruences, Discrete Math. 4 (1973), 359–366. MR 316359, DOI 10.1016/0012-365X(73)90170-2
- John Beebee, Some trigonometric identities related to exact covers, Proc. Amer. Math. Soc. 112 (1991), no. 2, 329–338. MR 1049133, DOI 10.1090/S0002-9939-1991-1049133-4
- John Beebee, Bernoulli numbers and exact covering systems, Amer. Math. Monthly 99 (1992), no. 10, 946–948. MR 1190561, DOI 10.2307/2324488
- George Gasper and Mizan Rahman, Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, vol. 35, Cambridge University Press, Cambridge, 1990. With a foreword by Richard Askey. MR 1052153
- Earl D. Rainville, Special functions, The Macmillan Company, New York, 1960. MR 0107725
- Jerrold E. Marsden, Basic complex analysis, W. H. Freeman and Co., San Francisco, Calif., 1973. With the assistance of Michael Buchner, Michael Hoffman and Clifford Risk. MR 0352419
- Břetislav Novák and Štefan Znám, Disjoint covering systems, Amer. Math. Monthly 81 (1974), 42–45. MR 332632, DOI 10.2307/2318911
- Sherman K. Stein, Unions of arithmetic sequences, Math. Ann. 134 (1958), 289–294. MR 93493, DOI 10.1007/BF01343822
- M. A. Berger, A. Felzenbaum, A. S. Fraenkel, and R. Holzman, On infinite and finite covering systems, Amer. Math. Monthly 98 (1991), no. 8, 739–742. MR 1130685, DOI 10.2307/2324427
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 120 (1994), 1061-1065
- MSC: Primary 33B15
- DOI: https://doi.org/10.1090/S0002-9939-1994-1180463-4
- MathSciNet review: 1180463