A NECESSARY CONDITION FOR AN ELLIPTIC ELEMENT TO BELONG TO A UNIFORM TREE LATTICE

YING-SHENG LIU

Abstract. Let X be a universal cover of a finite connected graph, $G = \text{Aut}(X)$, and Γ a group acting discretely and cocompactly on X, i.e., a uniform lattice on X. We give a necessary condition for an elliptic element of G to belong to a uniform lattice or to the commensurability group. By using this condition, we construct some explicit examples.

Continuing the classic Bass-Serre theory on graphs of groups [S], Bass developed the covering theory for graphs of groups [B]. Using this, Bass and Kulkarni developed the uniform tree lattices theory in their joint paper [BK]. In that paper they obtained a lot of important results. It is fruitful to think of (G, X, Γ) as a combinatorial analogue of $(\text{PSL}_2(\mathbb{R}), \text{upper half plane}, \text{fuchsian group})$.

Let X be a 'uniform tree', i.e., the universal cover of a finite connected graph, $G = \text{Aut}(X)$, equipped with compact open topology. The subgroup $H < G$ is discrete iff every vertex stabilizer H_x for $x \in VX$ is finite, where VX is the set of all vertices of X. We call $\Gamma < G$ a uniform X-lattice if Γ is discrete and the quotient graph $\Gamma \backslash X$ is finite (i.e., VX has only finitely many Γ-orbits). Let Γ_0, Γ_1 be subgroups of G. Γ_0 and Γ_1 are said to be commensurable (denoted $\Gamma_0 \sim \Gamma_1$), if the index $[\Gamma_i : \Gamma_0 \cap \Gamma_1]$ is finite for $i = 0, 1$. The commensurator (or "virtual normalizer") of Γ in G is the group $C_G(\Gamma) = \{g \in G | g\Gamma g^{-1} \sim \Gamma\}$. It was shown in [BK] that, up to G-conjugacy, any two uniform lattices in G are commensurable. Thus the commensurator $C_G(\Gamma)$ of a uniform lattice $\Gamma \leq G$ is, up to conjugacy, independent of Γ; we denote it by $C(X)$. It is proved in [L1] that $C(X)$ is dense in G, which was conjectured in [BK].

In this paper, we give a necessary condition for an elliptic element (i.e., one having fixed points) of G to belong to a uniform lattice or to the commensurability group $C(X)$. By this condition, it is then easy to construct some automorphisms of X which do not belong to a uniform lattice, nor do they belong to $C(X)$.

We address here the following questions:

Question. Let X be a uniform tree, $G = \text{Aut}(X)$, $g \in G$. When is there a uniform X-lattice Γ: (a) such that $g \in \Gamma$; (b) such that $g \in C_G(\Gamma)$?
We begin by quoting

Proposition 1 [BK, (4.2) Conjugacy Theorem]. If \(g \) is hyperbolic (i.e., acting on \(X \) freely), then \(g \) belongs to a uniform lattice.

So the case of main interest is when \(g \) is of finite order. The following notion, due to Gelfand, will be useful for our discussion.

Definition. Let \(G \) be a locally compact group. An element \(u \in G \) will be called \(G \)-unipotent if the closure of its \(G \)-conjugacy class \(C_G(u) \) contains 1, where \(C_G(u) = \{ gug^{-1} | g \in G \} \).

Lemma 1. Assume that \(\Gamma \setminus G \) is compact, in the sense that \(G = K \cdot \Gamma \) for some compact set \(K \subset G \). If \(\sigma \in G \) is \(G \)-unipotent then the closure of its \(\Gamma \)-conjugacy class \(C_\Gamma(\sigma) \) contains 1, where \(C_\Gamma(\sigma) = \{ \gamma \sigma \gamma^{-1} | \gamma \in \Gamma \} \).

Proof. Say

\[
1 = \lim_{n} g_n \sigma g_n^{-1}, \quad g_n \in G, \ n = 1, 2, \ldots
\]

Write \(g_n = k_n \gamma_n \), where \(k_n \in K, \ \gamma_n \in \Gamma \).

Passing to a subsequence we can (compactness of \(K \)) assume that \(k_n \to k \) for some \(k \in K \). Then

\[
1 = \lim_{n} k_n \gamma_n \sigma \gamma_n^{-1} k_n^{-1} = \lim_{n} \gamma_n \sigma \gamma_n^{-1} k_n^{-1},
\]

and so

\[
1 = \lim_{n} \gamma_n \sigma \gamma_n^{-1}, \quad \gamma_n \in \Gamma. \quad \text{Q.E.D}
\]

Proposition 2. Let \(\Gamma \in \text{Lat}_u(X) \); then \(C_\Gamma(\Gamma) \), in particular \(\Gamma \), contains no \(G \)-unipotent element \(\neq 1 \).

Proof. Suppose that \(\sigma \in C_\Gamma(\Gamma) \) is \(G \)-unipotent.

Put \(\Gamma' = \Gamma \cap \sigma \Gamma \sigma^{-1} \), a subgroup of finite index in \(\Gamma \). Applying Lemma 1 to \(\Gamma' \), we have \(1 = \lim_{\gamma_n} \gamma_n \sigma \gamma_n^{-1} \) with \(\gamma_n \in \Gamma' \). Hence,

\[
\sigma^{-1} = \lim_{\gamma_n} \sigma^{-1} \gamma_n \sigma \gamma_n^{-1}.
\]

But, for each \(n \), \((\sigma^{-1} \gamma_n \sigma) \gamma_n^{-1} \in (\sigma^{-1} \Gamma' \sigma, \Gamma') \leq \Gamma \), and \(\Gamma \) is discrete. Hence, for \(n \gg 0 \),

\[
\sigma^{-1} = \sigma^{-1} \gamma_n \sigma \gamma_n^{-1};
\]

whence, \(\gamma_n \sigma \gamma_n^{-1} = 1 \), i.e., \(\sigma = 1 \). \quad \text{Q.E.D.}

Thus we get a necessary condition for an elliptic \(g \neq 1 \) to belong to a uniform tree lattice or \(C(X) \) that \(g \) is not a \(G \)-unipotent element.

Lemma 2. An element \(\sigma \in G \) is \(G \)-unipotent iff it is elliptic and its tree of fixed points contains a \(G \)-translate of any given finite subtree.

Proof. Assume that \(\sigma \in G \) is \(G \)-unipotent. Thus, by the definition, there is a sequence \(\{ g_n \in G, \ n = 1, 2, \ldots \} \) such that \(\lim_n g_n^{-1} \sigma g_n = 1 \). In other words, for any given finite subtree \(Y \) of \(X \) and for \(n \gg 0 \), we have \(g_n^{-1} \sigma g_n | Y = \text{id} | Y \), i.e., \(\sigma | (g_n Y) = \text{id} | (g_n Y) \). So, \(\sigma \) is elliptic and its tree of fixed points contains \(g_n Y \), where \(g_n \in G \) and \(Y \) is any given finite subtree of \(X \).

Conversely, suppose that \(\sigma \) is elliptic and its tree of fixed points contains a \(G \)-translate of any given finite subtree.
For \(a \in VX \), put \(B_a(n) = \{ x \in VX | d(a, x) \leq n \} \). Then \{\(B_a(n), \ n = 1, 2, \ldots \}\) is a sequence of finite subtrees of \(X \). For each \(B_a(n) \), by the assumption, there is \(g_n \in G \), such that

\[
\sigma(g_nB_a(n)) = \text{id}(g_nB_a(n)),
\]
i.e.,

\[
g_n^{-1} \sigma g_nB_a(n) = \text{id}B_a(n), \quad g_n \in G, \ n = 1, 2, \ldots.
\]

So, \(\lim_n g_n^{-1} \sigma g_n = 1, \ g_n \in G \). Q.E.D.

Now, it is easy to construct \(G \)-unipotent elements of finite order, which thus lie in no uniform lattice (or even the commensurator of one).

Example 1. Let \(X \) be the following virtually linear tree:

![Diagram of a virtually linear tree]

Clearly, \(X \) is a uniform tree. In fact, let \(g \in \text{Aut}(X) \) be defined by

\[
g(x_n) = x_{n+1}, \quad g(y_n) = y_{n+1}, \quad g(z_n) = z_{n+1}, \quad n = 0, \pm 1, \pm 2, \ldots,
\]

then \(\langle g \rangle \) is a uniform lattice of \(X \): \(\langle g \rangle \) is discrete and \(\langle g \rangle \backslash X \) is finite.

Define \(\sigma \in G = \text{Aut}(X) \), such that \(\sigma(x_0) = y_0, \ \sigma(y_0) = x_0 \), and \(\sigma \) acts on \(X - \{x_0, y_0\} \) trivially.

Clearly, the subtree of fixed points of \(\sigma \) contains a \(G \)-translate of any given finite subtree of \(X \). By Lemma 2, \(\sigma \) is a nontrivial \(G \)-unipotent. Hence, by Proposition 2, \(\sigma \) does not belong to any uniform lattice nor even to the commensurator of any uniform lattice.

Example 2. Let \(X \) be the Cayley tree \(\text{Cay}(F(x, y), \{x, y\}) \), where \(F(x, y) \) is a free group on a basis \(\{x, y\} \). Let \(\alpha \in \text{Aut}(F(x, y)) \), such that \(\alpha(x) = y, \ \alpha(y) = x \). Put

\[
P = \{ u \in F(x, y) | \text{reduced word of } u \text{ begins with } x \text{ or } y \}.
\]

Note that \(\alpha \) defines an automorphism of \(X \) and \(\alpha P = P \). Define \(\sigma \in \text{Aut}(X) \) by

\[
\sigma(u) = \begin{cases}
\alpha(u) & \text{if } u \in P, \\
u & \text{if } u \notin P.
\end{cases}
\]
Since \(\sigma \) switches two branches of \(X \) and fixes the other two branches, the subtree of fixed points of \(\sigma \) contains \(G \)-translate of any given finite subtree of \(X \). By Lemma 2, \(\sigma \) is a nontrivial \(G \)-unipotent. Hence, \(\sigma \) lies in no uniform lattice nor even the commensurator of one.

On the other hand, we have

Proposition 3. Let \(\Gamma \leq G \) be a uniform lattice and \(F \leq C_G(\Gamma) \) a subgroup such that \(F \cdot \Gamma / \Gamma \) is finite. Then \(F \leq \Gamma' \) for some \(\Gamma' \sim \Gamma \).

Proof. We may assume that \(F \cdot \Gamma = S \cdot \Gamma \), where \(S \) is a finite subset of \(C_G(\Gamma) \). Put

\[
\Gamma_0 = \bigcap_{g \in F \cdot \Gamma} g \Gamma g^{-1} = \bigcap_{s \in S} s \Gamma s^{-1}.
\]

As \(s \in C_G(\Gamma) \), \(s \Gamma s^{-1} \sim \Gamma \) for each \(s \in S \). Since the intersection of two subgroups of finite index has finite index, it follows that a commensurability class of subgroups of \(G \) is stable under finite intersection. Thus the finite intersection \(\Gamma_0 \) is commensurable with \(\Gamma \). And, clearly, \(\Gamma_0 \) is normalized by \(F \), i.e., \(F \leq N_G(\Gamma_0) \). According to [BK, Corollary (6.4)], \(\Gamma_0 \setminus N_G(\Gamma_0) \) is finite, so \(N_G(\Gamma_0) \sim \Gamma_0 \sim \Gamma \). Thus the proposition is proved by taking \(\Gamma' = N_G(\Gamma_0) \).

Remark. Proposition 3 applies notably when \(F \leq C_G(\Gamma) \) is finite or when \(F = \langle g \rangle \) with \(g^n \in \Gamma \) for some \(n > 0 \).

ACKNOWLEDGMENT

The above results formed a portion of my doctoral dissertation [L2]. I am very grateful to my advisor Hyman Bass for all of his help and encouragement. He has always been concerned about my work and generous with his time and ideas.

I also thank Ravi Kulkarni, John Morgan, and Guoliang Yu for their interest and helpful comments. At last, I thank the referee for his careful reading and good suggestions.

REFERENCES

AN ELLIPTIC ELEMENT BELONGING TO A UNIFORM TREE LATTICE

Department of Mathematics, State University of New York, College at Plattsburgh, Plattsburgh, New York 12901
E-mail address: liuys@snyplava.bitnet