RATES OF GROWTH OF P.I. ALGEBRAS

ALLAN BERELE

(Communicated by Lance W. Small)

Abstract. Let A be any p.i. algebra in characteristic zero. Then the GK-dimension of finitely generated subalgebras is linearly bounded in the number of generators.

Let A be any p.i. algebra in characteristic zero. For \(a_1, \ldots, a_k \in A \) we denote by \(\langle a_1, \ldots, a_k \rangle \) the subalgebra generated by these elements. By [1] the GK-dimension of \(\langle a_1, \ldots, a_k \rangle \) will be finite for any finite \(k \). In this paper we will show how these dimensions depend on \(k \). Namely,

Theorem. For any p.i. algebra \(A \) there exists a linear function \(f(k) \) such that, for all \(a_1, \ldots, a_k \in A \), \(\text{GKdim} \langle a_1, \ldots, a_k \rangle < f(k) \).

The main tool in proving this paper will be the following theorem of Kemer's ([4, Corollary 1], also proven in [3, Corollary 8]):

Theorem. Let \(M_n(E) \) denote the \(n \times n \) matrices over the infinite-dimensional Grassmann algebra \(E \). Let \(A \) be any (characteristic zero!) p.i. algebra. Then for large \(n \), \(A \) satisfies all of the identities of \(M_n(E) \).

Now let \(U \) be the universal p.i. algebra for \(M_n(E) \) with canonical generators \(x_1, x_2, \ldots \), and let \(U_k \) be \(\langle x_1, \ldots, x_k \rangle \), the subalgebra generated by \(x_1, \ldots, x_k \). We showed in [2] that \(\text{GKdim} U_k = (k - 1)n^2 + 1 \). Without resorting to that work, it is not hard to show that \(\text{GKdim} U_k \) is bounded by a linear function in \(k \). Here is a sketch suggested by the referee:

Let \(K \) be the algebra gotten by adjoining the commutative variables \(i_{ij}^{(\alpha)} \) and the anticommuting variables \(e_{ij}^{(\alpha)} \) to the field \(F \), \(i, y = 1, \ldots, n \), \(\alpha = 1, \ldots, k \). For each \(\alpha \) let \(X_\alpha \) be the \(n \times n \) matrix with \((i, j) \)-entry \(i_{ij}^{(\alpha)} + e_{ij}^{(\alpha)} \), for each \((i, j) \). Then \(U_k \) is the subalgebra of \(M_n(K) \) generated by \(X_1, \ldots, X_k \). Hence, \(\text{GKdim} U_k \leq \text{GKdim} M_n(K) \). It is then not hard to see that \(\text{GKdim} M_n(K) = kn^2 \).

The proof of our theorem now follows. By Kemer's theorem \(A \) satisfies all of the identities of \(M_n(E) \) for some \(n \). Hence, \(\langle a_1, \ldots, a_k \rangle \) will be a homomorphic image of \(U_k \), so \(\text{GKdim} \langle a_1, \ldots, a_k \rangle \leq \text{GKdim} U_k \) which is linear in \(k \).
REFERENCES

DEPARTMENT OF MATHEMATICAL SCIENCES, DEPAUL UNIVERSITY, 2219 NORTH KENMORE AVENUE, CHICAGO, ILLINOIS 60614-3504