Rates of growth of p.i. algebras
HTML articles powered by AMS MathViewer
- by Allan Berele
- Proc. Amer. Math. Soc. 120 (1994), 1047-1048
- DOI: https://doi.org/10.1090/S0002-9939-1994-1204370-3
- PDF | Request permission
Abstract:
Let $A$ be any p.i. algebra in characteristic zero. Then the ${\text {GK}}$-dimension of finitely generated subalgebras is linearly bounded in the number of generators.References
- Allan Berele, Homogeneous polynomial identities, Israel J. Math. 42 (1982), no. 3, 258–272. MR 687131, DOI 10.1007/BF02802727
- Allan Berele, Generic verbally prime PI-algebras and their GK-dimensions, Comm. Algebra 21 (1993), no. 5, 1487–1504. MR 1213968, DOI 10.1080/00927879308824632
- Allan Berele, Magnum P.I, Israel J. Math. 51 (1985), no. 1-2, 13–19. MR 804472, DOI 10.1007/BF02772954 A. R. Kemer, Varieties and ${Z_2}$-graded algebras, Math. USSR-Izv. 25 (1985), 359-374.
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 120 (1994), 1047-1048
- MSC: Primary 16R99; Secondary 16P90
- DOI: https://doi.org/10.1090/S0002-9939-1994-1204370-3
- MathSciNet review: 1204370