Factorization of positive cones of order $n$ of von Neumann algebras
HTML articles powered by AMS MathViewer
- by Yasuhide Miura
- Proc. Amer. Math. Soc. 120 (1994), 1093-1100
- DOI: https://doi.org/10.1090/S0002-9939-1994-1209426-7
- PDF | Request permission
Abstract:
In this paper we shall consider the factorization of positive cones of order $n$ of a von Neumann algebra. Namely, we shall show the existence of a ${\ast }$-subalgebra inducing the positive cone of order $n$ of a von Neumann algebra.References
- A. Connes, On hyperfinite factors of type $\textrm {III}_{0}$ and Kriegerโs factors, J. Functional Analysis 18 (1975), 318โ327. MR 0372635, DOI 10.1016/0022-1236(75)90019-1
- A. Connes, Classification of injective factors. Cases $II_{1},$ $II_{\infty },$ $III_{\lambda },$ $\lambda \not =1$, Ann. of Math. (2) 104 (1976), no.ย 1, 73โ115. MR 454659, DOI 10.2307/1971057
- Uffe Haagerup, Connesโ bicentralizer problem and uniqueness of the injective factor of type $\textrm {III}_1$, Acta Math. 158 (1987), no.ย 1-2, 95โ148. MR 880070, DOI 10.1007/BF02392257
- Yasuhide Miura, A certain factorization of self-dual cones associated with standard forms of injective factors, Tokyo J. Math. 13 (1990), no.ย 1, 73โ86. MR 1059015, DOI 10.3836/tjm/1270133005
- Gert K. Pedersen, $C^{\ast }$-algebras and their automorphism groups, London Mathematical Society Monographs, vol. 14, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1979. MR 548006
- Lothar M. Schmitt and Gerd Wittstock, Characterization of matrix-ordered standard forms of $W^{\ast }$-algebras, Math. Scand. 51 (1982), no.ย 2, 241โ260 (1983). MR 690530, DOI 10.7146/math.scand.a-11979
- Toshiyuki Takasaki and Jun Tomiyama, Stinespring type theorems for various types of completely positive maps associated to operator algebras, Math. Japon. 27 (1982), no.ย 1, 129โ139. MR 649029
- Masamichi Takesaki, Theory of operator algebras. I, Springer-Verlag, New York-Heidelberg, 1979. MR 548728, DOI 10.1007/978-1-4612-6188-9
- Jun Tomiyama, On the difference of $n$-positivity and complete positivity in $C^{\ast }$-algebras, J. Functional Analysis 49 (1982), no.ย 1, 1โ9. MR 680854, DOI 10.1016/0022-1236(82)90083-0
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 120 (1994), 1093-1100
- MSC: Primary 46L10
- DOI: https://doi.org/10.1090/S0002-9939-1994-1209426-7
- MathSciNet review: 1209426