Nonunimodality of graded Gorenstein Artin algebras
HTML articles powered by AMS MathViewer
- by Mats Boij and Dan Laksov
- Proc. Amer. Math. Soc. 120 (1994), 1083-1092
- DOI: https://doi.org/10.1090/S0002-9939-1994-1227512-2
- PDF | Request permission
Abstract:
We give an explicit expression for the Hilbert function of a large class of graded Gorenstein Artin algebras and give a criterion for this function to be unimodal. As a result we obtain an abundance of graded Gorenstein Artin algebras with nonunimodal Hilbert function.References
- David Bernstein and Anthony Iarrobino, A nonunimodal graded Gorenstein Artin algebra in codimension five, Comm. Algebra 20 (1992), no. 8, 2323–2336. MR 1172667, DOI 10.1080/00927879208824466
- R. Fröberg and D. Laksov, Compressed algebras, Complete intersections (Acireale, 1983) Lecture Notes in Math., vol. 1092, Springer, Berlin, 1984, pp. 121–151. MR 775880, DOI 10.1007/BFb0099360
- Tor H. Gulliksen, Massey operations and the Poincaré series of certain local rings, J. Algebra 22 (1972), 223–232. MR 306190, DOI 10.1016/0021-8693(72)90143-3
- M. Hochster and L. J. Ratliff Jr., Five theorems on Macaulay rings, Pacific J. Math. 44 (1973), 147–172. MR 314834
- Anthony Iarrobino, Compressed algebras: Artin algebras having given socle degrees and maximal length, Trans. Amer. Math. Soc. 285 (1984), no. 1, 337–378. MR 748843, DOI 10.1090/S0002-9947-1984-0748843-4
- Idun Reiten, The converse to a theorem of Sharp on Gorenstein modules, Proc. Amer. Math. Soc. 32 (1972), 417–420. MR 296067, DOI 10.1090/S0002-9939-1972-0296067-7
- Richard P. Stanley, Hilbert functions of graded algebras, Advances in Math. 28 (1978), no. 1, 57–83. MR 485835, DOI 10.1016/0001-8708(78)90045-2
- Martin Aigner (ed.), Higher combinatorics, NATO Advanced Study Institute Series C: Mathematical and Physical Sciences, vol. 31, D. Reidel Publishing Co., Dordrecht-Boston, Mass., 1977. MR 0540987
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 120 (1994), 1083-1092
- MSC: Primary 13D40; Secondary 13E10, 13H10
- DOI: https://doi.org/10.1090/S0002-9939-1994-1227512-2
- MathSciNet review: 1227512