RAMSEY-THEORY AND FORCING EXTENSIONS

PÉTER KOMJÁTH

(Communicated by Andreas R. Blass)

Abstract. In every forcing extension of every model of set theory by a non-trivial (set) forcing there exist a graph Y and a cardinal μ, such that every graph has an edge coloring with μ colors with no monochromatic induced copy of Y.

One of the basic questions in the Ramsey theory of graphs is the following. Given the graphs X and Y and a cardinal μ, is it true that whenever the edges of X are μ-colored, there always exists a monochromatic induced copy of Y? We denote the affirmative answer by $X \rightarrow (Y)^2_\mu$, the negative one by $X \not\rightarrow (Y)^2_\mu$. The question whether for each Y, μ there exists such an X was answered positively for Y, μ finite in the early seventies. It was natural to assume that the answer is positive in the unrestricted case, too. However, in [2], Hajnal and Komjáth showed that adding a Cohen real produces a counterexample, a graph Y of cardinal ω_1 such that for no graph X in the enlarged model does $X \rightarrow (Y)^2_\mu$ hold. Soon after, S. Shelah showed that the “yes” answer is consistent, too; a class forcing gives a model, where for every pair Y, μ an appropriate X exists.

Here we show that there is nothing special about the Cohen forcing: every (set) forcing adds a counterexample, assuming that it adds something.

For a good exposition and more historical details we refer to [1].

We call a poset nontrivial, if every condition has incompatible extensions.

Theorem. If (P, \leq) is any nontrivial (set) notion of forcing, then, in V^P, there exist a graph Y and a cardinal μ such that $X \not\rightarrow (Y)^2_\mu$ holds for every graph X.

Fix the poset (P, \leq) for the rest of the paper.

Lemma 1. There is a dense set $D = \{p(\alpha): \alpha < \kappa\} \subseteq P$ for some cardinal κ such that $p(\alpha) \not\leq p(\beta)$ whenever $\alpha < \beta < \kappa$.

This is Hausdorff’s theorem for partially ordered sets. For the sake of completeness we supply a proof.

Proof. Let κ be the minimal cardinal such that there is a dense set of cardinal κ, say $E = \{q(\alpha): \alpha < \kappa\}$. Put $\alpha \in X$ if for no $\beta < \alpha$ does $q(\beta) < q(\alpha)$ hold.

Received by the editors June 26, 1992.

1991 Mathematics Subject Classification. Primary 03E05, 03E35.
We claim that \(D = \{ q(\alpha) : \alpha \in X \} \) is dense. As this implies that \(|D| = \kappa \), this clearly suffices. Assume that \(p \in P \) is arbitrary. Let \(\alpha < \kappa \) be the least ordinal such that \(q(\alpha) \leq p \) (exists as \(E \) is dense). \(\alpha \in X \), as otherwise, for some \(\beta < \alpha \), \(q(\beta) < q(\alpha) \leq p \), so \(\alpha \) was not minimal. If now \(X = \{ \xi(\alpha) : \alpha < \kappa \} \) is the increasing enumeration of \(X \), then \(p(\alpha) = q(\xi(\alpha)) \) is as required.

Lemma 2. There is a function \(T : [2^\kappa]^2 \to \kappa \) such that whenever \(h : 2^\kappa \to \kappa \), there is an \(i < \kappa \) such that \(T \) assumes every value \(< \kappa \) on \(h^{-1}(\{i\}) \).

Proof. In the proof we repeatedly use König’s theorem, i.e., that \(\text{cf}(2^\kappa) > \kappa \). As \((2^\kappa)^\kappa = 2^\kappa \) it is possible to define \(T : [2^\kappa]^2 \to \kappa \) with the following property. If \(x(\alpha) < 2^\kappa \) are different and \(i(\alpha) < \kappa \) for \(\alpha < \kappa \), then there exist arbitrary large \(y < 2^\kappa \) such that \(T(x(\alpha), y) = i(\alpha) \) for all \(\alpha < \kappa \). We show that this \(T \) works.

Assume that \(h : 2^\kappa \to \kappa \) is a counterexample and that the color class \(h^{-1}(\{i\}) \) misses some \(i(\alpha) < \kappa \). Put \(S = \{ \alpha : \sup(h^{-1}(\{\alpha\})) = 2^\kappa \} \). Select \(z < 2^\kappa \) so large that \(\sup(h^{-1}(\{\alpha\})) < z \) for \(\alpha \notin S \) and \(h^{-1}(\{\alpha\}) \) has at least \(\kappa \) elements below \(z \) for \(\alpha \in S \). Then we can choose different \(x(\alpha) < z \), \(h(x(\alpha)) = \alpha \) (\(\alpha \in S \)) and find \(y > z \) with \(T(x(\alpha), y) = i(\alpha) \) (by the way \(T \) was constructed). If now \(h(y) = \alpha \), clearly \(\alpha \in S \), so then \(h^{-1}(\{i\}) \) does not miss color \(i(\alpha) \), a contradiction.

Given \(\{ p(\alpha) : \alpha < \kappa \} \) as in Lemma 1 and \(T \) as in Lemma 2, assume that \(G \subseteq P \) is a generic set. We construct the graph \(Y \) in the theorem as follows. The vertex set will be \(2^\kappa \). For \(\alpha < \beta < 2^\kappa \) we let \(\{ \alpha, \beta \} \) be an edge of \(Y \) iff \(p(T(\alpha, \beta)) \in G \). Assume that \(1 \vDash X \) is a graph on \(\lambda \). In \(V[G] \), if \(\alpha < \beta < \lambda \) and \(\{ \alpha, \beta \} \in X \), then some element of \(D \cap G \) forces this, as \(D \) is dense, and those conditions determining the truth value of \(\{ \alpha, \beta \} \in X \) form a dense, open set, so \(G \) meets the intersection of these two sets and the condition in the intersection cannot force \(\{ \alpha, \beta \} \notin X \). Color the edge \(\{ \alpha, \beta \} \) by the least \(\xi < \kappa \) such that \(p(\xi) \in G \) forces \(\{ \alpha, \beta \} \in X \).

Assume that there are \(p \in P \), \(i < \kappa \) such that \(p \vDash f : 2^\kappa \to \lambda \) embeds \(Y \) into the \(i \)th color of \(X \). Clearly, \(p \) and \(p(i) \) are compatible (as otherwise \(p \) forces that no edge gets color \(i \)), so we may as well assume that \(p \leq p(i) \). For every \(\alpha < 2^\kappa \) select \(\gamma(\alpha) < \kappa \), \(g(\alpha) < \lambda \) such that \(p(\gamma(\alpha)) \leq p \), \(p(\gamma(\alpha)) \vDash f(\alpha) = g(\alpha) \). By Lemma 2, there is a \(j < \kappa \) such that \(T \) assumes every value \(< \kappa \) in \(\{ \alpha < 2^\kappa : \gamma(\alpha) = j \} \). Select incompatible \(p(\delta), p(\delta') < p(j) \). As \(p(\delta) < p(j) \leq p \leq p(i) \), by Lemma 1, \(i \leq j < \delta \) holds. There are \(\alpha < \beta < 2^\kappa \) with \(\gamma(\alpha) = \gamma(\beta) = j \), \(T(\alpha, \beta) = \delta \). Then \(p(\delta) \) forces that \(\{ \alpha, \beta \} \in Y \), \(f(\alpha) = g(\alpha), f(\beta) = g(\beta) \) which imply that \(\{ g(\alpha), g(\beta) \} \in X \). By the way we colored the edges of \(X \), \(p(i) \vDash \{ g(\alpha), g(\beta) \} \in X \), which cannot be true as \(p(\delta') \) forces that \(f(\alpha) = g(\alpha), f(\beta) = g(\beta) \), but it also forces that \(p(\delta) \notin G \) and so \(\{ \alpha, \beta \} \notin Y \), so \(\{ g(\alpha), g(\beta) \} \notin X \).

References

Department of Mathematics and Statistics, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6

Current address: Department of Computer Science, Eotvos Lorand University, Muzeum krt 6-8, 1088 Budapest, Hungary

E-mail address: kope@gallai.elte.hu