Solvability of semilinear equations with compact perturbations of operators of monotone type
HTML articles powered by AMS MathViewer
- by Zhengyuan Guan
- Proc. Amer. Math. Soc. 121 (1994), 93-102
- DOI: https://doi.org/10.1090/S0002-9939-1994-1174492-4
- PDF | Request permission
Abstract:
The solvability of the equation $Au - Tu + Cu = f$ is studied under various assumptions of monotonicity and compactness on the operators A, T, and C, which map subsets of a reflexive Banach space X into its dual space. It is nowhere assumed that X possesses a Schauder basis or that the operator T is positive definite and selfadjoint. The results extend and/or improve recent results obtained by Chen, Kartsatos and Mabry, and Kesavan.References
- Nicholas D. Alikakos and Rouben Rostamian, Lower bound estimates and separable solutions for homogeneous equations of evolution in Banach space, J. Differential Equations 43 (1982), no. 3, 323–344. MR 649843, DOI 10.1016/0022-0396(82)90081-X
- Felix E. Browder, Fixed point theory and nonlinear problems, Bull. Amer. Math. Soc. (N.S.) 9 (1983), no. 1, 1–39. MR 699315, DOI 10.1090/S0273-0979-1983-15153-4
- Felix E. Browder and Bui An Ton, Convergence of approximants by regularization for solutions of nonlinear functional equations in Banach spaces, Math. Z. 106 (1968), 1–16. MR 239472, DOI 10.1007/BF01137968
- Yong Zhuo Chen, Solvability of nonlinear perturbations of linear operator equations with parameters, Appl. Anal. 44 (1992), no. 3-4, 209–222. MR 1284999, DOI 10.1080/00036819208840079
- Philippe G. Ciarlet and Patrick Rabier, Les équations de von Kármán, Lecture Notes in Mathematics, vol. 826, Springer, Berlin, 1980 (French). MR 595326 Z. Guan, On operators of monotone type in Banach space, Ph.D. Dissertation, Univ. South Florida, Tampa, FL, 1990.
- Athanassios G. Kartsatos and Richard D. Mabry, On the solvability in Hilbert space of certain nonlinear operator equations depending on parameters, J. Math. Anal. Appl. 120 (1986), no. 2, 670–678. MR 864783, DOI 10.1016/0022-247X(86)90188-5
- S. Kesavan, Existence of solutions by the Galerkin method for a class of nonlinear problems, Applicable Anal. 16 (1983), no. 4, 279–290. MR 718535, DOI 10.1080/00036818308839475
- N. G. Lloyd, Degree theory, Cambridge Tracts in Mathematics, No. 73, Cambridge University Press, Cambridge-New York-Melbourne, 1978. MR 0493564 P. S. Milojević, Solvability of some semilinear equations with strong nonlinearities and application to elliptic problems, Appl. Anal. 25 (3) (1987), 181-196.
- P. S. Milojević, Solvability of semilinear equations with strong nonlinearities and applications to elliptic boundary value problems, Comment. Math. Univ. Carolin. 28 (1987), no. 4, 735–750. MR 928686 D. Pascali and J. Sburlan, Nonlinear mappings of monotone type, Sijthoff and Noordhoof, Bucharest, 1978.
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 121 (1994), 93-102
- MSC: Primary 47H15; Secondary 47H05, 47H11
- DOI: https://doi.org/10.1090/S0002-9939-1994-1174492-4
- MathSciNet review: 1174492