Stable absolutely ubiquitous structures
HTML articles powered by AMS MathViewer
- by A. A. Ivanov PDF
- Proc. Amer. Math. Soc. 121 (1994), 221-224 Request permission
Abstract:
It is proved that absolutely ubiquitous structures with trivial algebraic closures are monadically stable.References
- I. M. Hodkinson and H. D. Macpherson, Relational structures determined by their finite induced substructures, J. Symbolic Logic 53 (1988), no. 1, 222–230. MR 929387, DOI 10.2307/2274440
- James H. Schmerl, Coinductive $\aleph _0$-categorical theories, J. Symbolic Logic 55 (1990), no. 3, 1130–1137. MR 1071319, DOI 10.2307/2274478
- A. H. Lachlan, Complete theories with only universal and existential axioms, J. Symbolic Logic 52 (1987), no. 3, 698–711. MR 902985, DOI 10.2307/2274358 E. A. Palyutin, Modeli so schetno kategorichnymi universalnymi teoriami, Algebra i Logika 10 (1971), 23-32.
- H. D. Macpherson, Absolutely ubiquitous structures and $\aleph _0$-categorical groups, Quart. J. Math. Oxford Ser. (2) 39 (1988), no. 156, 483–500. MR 975912, DOI 10.1093/qmath/39.4.483 A. H. Lachlan, $\omega$-categorical tree-decomposable structures, preprint, 1990.
Additional Information
- © Copyright 1994 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 121 (1994), 221-224
- MSC: Primary 03C45
- DOI: https://doi.org/10.1090/S0002-9939-1994-1174495-X
- MathSciNet review: 1174495