A homogeneous, globally solvable differential operator on a nilpotent Lie group which has no tempered fundamental solution
HTML articles powered by AMS MathViewer
- by Detlef Müller
- Proc. Amer. Math. Soc. 121 (1994), 307-310
- DOI: https://doi.org/10.1090/S0002-9939-1994-1179590-7
- PDF | Request permission
Abstract:
We present an example of a homogeneous, left-invariant differential operator on the Heisenberg group ${H_3}$ which admits fundamental solutions but no tempered ones. This answers a question raised by Corwin in the negative.References
- Françoise Battesti, Résolubilité globale d’opérateurs différentiels invariants sur certains groupes de Lie, J. Funct. Anal. 77 (1988), no. 2, 261–308 (French, with English summary). MR 933970, DOI 10.1016/0022-1236(88)90088-2
- Lawrence Corwin, Criteria for solvability of left invariant operators on nilpotent Lie groups, Trans. Amer. Math. Soc. 280 (1983), no. 1, 53–72. MR 712249, DOI 10.1090/S0002-9947-1983-0712249-3
- L. Corwin and L. P. Rothschild, Necessary conditions for local solvability of homogeneous left invariant differential operators on nilpotent Lie groups, Acta Math. 147 (1981), no. 3-4, 265–288. MR 639041, DOI 10.1007/BF02392875
- G. B. Folland, Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat. 13 (1975), no. 2, 161–207. MR 494315, DOI 10.1007/BF02386204
- G. B. Folland and Elias M. Stein, Hardy spaces on homogeneous groups, Mathematical Notes, vol. 28, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1982. MR 657581
- Daryl Geller, Liouville’s theorem for homogeneous groups, Comm. Partial Differential Equations 8 (1983), no. 15, 1665–1677. MR 729197, DOI 10.1080/03605308308820319
- Lars Hörmander, On the division of distributions by polynomials, Ark. Mat. 3 (1958), 555–568. MR 124734, DOI 10.1007/BF02589517 —, Linear partial differential operators, Springer, New York, 1964.
- B. Helffer and J. Nourrigat, Caracterisation des opérateurs hypoelliptiques homogènes invariants à gauche sur un groupe de Lie nilpotent gradué, Comm. Partial Differential Equations 4 (1979), no. 8, 899–958 (French). MR 537467, DOI 10.1080/03605307908820115
- S. Łojasiewicz, Sur le problème de la division, Studia Math. 18 (1959), 87–136 (French). MR 107168, DOI 10.4064/sm-18-1-87-136
- D. Müller, A new criterion for local nonsolvability of homogeneous left invariant differential operators on nilpotent Lie groups, J. Reine Angew. Math. 416 (1991), 207–219. MR 1099951, DOI 10.1515/crll.1991.416.207
- Detlef Müller, Local solvability of first order differential operators near a critical point, operators with quadratic symbols and the Heisenberg group, Comm. Partial Differential Equations 17 (1992), no. 1-2, 305–337. MR 1151265, DOI 10.1080/03605309208820843
- D. Müller and F. Ricci, Analysis of second order differential operators on Heisenberg groups. I, Invent. Math. 101 (1990), no. 3, 545–582. MR 1062795, DOI 10.1007/BF01231515
- D. Müller and F. Ricci, Analysis of second order differential operators on Heisenberg groups. II, J. Funct. Anal. 108 (1992), no. 2, 296–346. MR 1176678, DOI 10.1016/0022-1236(92)90027-G
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 121 (1994), 307-310
- MSC: Primary 22E30; Secondary 22E25
- DOI: https://doi.org/10.1090/S0002-9939-1994-1179590-7
- MathSciNet review: 1179590