Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society since 1950, Proceedings of the American Mathematical Society is devoted to shorter research articles in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2024 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

The conjugation operator on $A_ q(G)$
HTML articles powered by AMS MathViewer

by Sanjiv Kumar Gupta, Shobha Madan and U. B. Tewari
Proc. Amer. Math. Soc. 121 (1994), 163-166
DOI: https://doi.org/10.1090/S0002-9939-1994-1181167-4

Abstract:

Let G be a compact abelian group and $\Gamma$ its dual. For $1 \leq q < \infty$, the space ${A_q}(G)$ is defined as \[ {A_q}(G) = \{ f|f \in {L^1}(G),\quad \hat f \in {l_q}(\Gamma )\} \] with the norm ${\left \| f \right \|_{{A_q}}} = {\left \| f \right \|_{{L^1}}} + {\left \| {\hat f} \right \|_{{l_q}}}$. We prove: Let G be a compact, connected abelian group and P any fixed order on $\Gamma$. If $q > 2$ and $\phi$ is a Youngā€™s function, then the conjugation operator H does not extend to a bounded operator from ${A_q}(G)$ to the Orlicz space ${L^\phi }(G)$.
References
  • Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. I, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 115, Springer-Verlag, Berlin-New York, 1979. Structure of topological groups, integration theory, group representations. MR 551496, DOI 10.1007/978-1-4419-8638-2
  • Yitzhak Katznelson, An introduction to harmonic analysis, John Wiley & Sons, Inc., New York-London-Sydney, 1968. MR 0248482
  • M. A. Krasnoselā€²skiÄ­ and Ja. B. RutickiÄ­, Convex functions and Orlicz spaces, P. Noordhoff Ltd., Groningen, 1961. Translated from the first Russian edition by Leo F. Boron. MR 0126722
  • Ronald Larsen, An introduction to the theory of multipliers, Die Grundlehren der mathematischen Wissenschaften, Band 175, Springer-Verlag, New York-Heidelberg, 1971. MR 0435738, DOI 10.1007/978-3-642-65030-7
  • Walter Rudin, Fourier analysis on groups, Interscience Tracts in Pure and Applied Mathematics, No. 12, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0152834
  • A. Zygmund, Trigonometric series. Vol. I, II, Cambridge University Press, Cambridge-New York-Melbourne, 1977. Reprinting of the 1968 version of the second edition with Volumes I and II bound together. MR 0617944
Similar Articles
  • Retrieve articles in Proceedings of the American Mathematical Society with MSC: 43A17, 42A50, 47B38
  • Retrieve articles in all journals with MSC: 43A17, 42A50, 47B38
Bibliographic Information
  • © Copyright 1994 American Mathematical Society
  • Journal: Proc. Amer. Math. Soc. 121 (1994), 163-166
  • MSC: Primary 43A17; Secondary 42A50, 47B38
  • DOI: https://doi.org/10.1090/S0002-9939-1994-1181167-4
  • MathSciNet review: 1181167