The conjugation operator on $A_ q(G)$
HTML articles powered by AMS MathViewer
- by Sanjiv Kumar Gupta, Shobha Madan and U. B. Tewari
- Proc. Amer. Math. Soc. 121 (1994), 163-166
- DOI: https://doi.org/10.1090/S0002-9939-1994-1181167-4
- PDF | Request permission
Abstract:
Let G be a compact abelian group and $\Gamma$ its dual. For $1 \leq q < \infty$, the space ${A_q}(G)$ is defined as \[ {A_q}(G) = \{ f|f \in {L^1}(G),\quad \hat f \in {l_q}(\Gamma )\} \] with the norm ${\left \| f \right \|_{{A_q}}} = {\left \| f \right \|_{{L^1}}} + {\left \| {\hat f} \right \|_{{l_q}}}$. We prove: Let G be a compact, connected abelian group and P any fixed order on $\Gamma$. If $q > 2$ and $\phi$ is a Youngās function, then the conjugation operator H does not extend to a bounded operator from ${A_q}(G)$ to the Orlicz space ${L^\phi }(G)$.References
- Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. I, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 115, Springer-Verlag, Berlin-New York, 1979. Structure of topological groups, integration theory, group representations. MR 551496, DOI 10.1007/978-1-4419-8638-2
- Yitzhak Katznelson, An introduction to harmonic analysis, John Wiley & Sons, Inc., New York-London-Sydney, 1968. MR 0248482
- M. A. Krasnoselā²skiÄ and Ja. B. RutickiÄ, Convex functions and Orlicz spaces, P. Noordhoff Ltd., Groningen, 1961. Translated from the first Russian edition by Leo F. Boron. MR 0126722
- Ronald Larsen, An introduction to the theory of multipliers, Die Grundlehren der mathematischen Wissenschaften, Band 175, Springer-Verlag, New York-Heidelberg, 1971. MR 0435738, DOI 10.1007/978-3-642-65030-7
- Walter Rudin, Fourier analysis on groups, Interscience Tracts in Pure and Applied Mathematics, No. 12, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0152834
- A. Zygmund, Trigonometric series. Vol. I, II, Cambridge University Press, Cambridge-New York-Melbourne, 1977. Reprinting of the 1968 version of the second edition with Volumes I and II bound together. MR 0617944
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 121 (1994), 163-166
- MSC: Primary 43A17; Secondary 42A50, 47B38
- DOI: https://doi.org/10.1090/S0002-9939-1994-1181167-4
- MathSciNet review: 1181167