The kernel of an irreducible map
HTML articles powered by AMS MathViewer
- by Henning Krause
- Proc. Amer. Math. Soc. 121 (1994), 57-66
- DOI: https://doi.org/10.1090/S0002-9939-1994-1181169-8
- PDF | Request permission
Abstract:
Let $0 \to A \to B\xrightarrow {g}C \to 0$ be a short exact sequence in the category of finitely generated modules over an artin algebra. Suppose also that the map g is irreducible. Following a conjecture of Brenner, we discuss the property of the indecomposable module A to be the starting term of an almost split sequence with indecomposable middle term.References
- Maurice Auslander, Functors and morphisms determined by objects, Representation theory of algebras (Proc. Conf., Temple Univ., Philadelphia, Pa., 1976) Lecture Notes in Pure Appl. Math., Vol. 37, Dekker, New York, 1978, pp. 1–244. MR 0480688
- Maurice Auslander and Idun Reiten, Representation theory of Artin algebras. III. Almost split sequences, Comm. Algebra 3 (1975), 239–294. MR 379599, DOI 10.1080/00927877508822046
- Maurice Auslander and Idun Reiten, Representation theory of Artin algebras. IV. Invariants given by almost split sequences, Comm. Algebra 5 (1977), no. 5, 443–518. MR 439881, DOI 10.1080/00927877708822180 S. Brenner, On kernels of irreducible maps, preprint, 1991.
- M. C. R. Butler and Claus Michael Ringel, Auslander-Reiten sequences with few middle terms and applications to string algebras, Comm. Algebra 15 (1987), no. 1-2, 145–179. MR 876976, DOI 10.1080/00927878708823416
- Henning Krause, On the number of almost split sequences with indecomposable middle term, Bull. London Math. Soc. 26 (1994), no. 5, 422–426. MR 1308357, DOI 10.1112/blms/26.5.422
- Roberto Martínez-Villa, Almost projective modules and almost split sequences with indecomposable middle term, Comm. Algebra 8 (1980), no. 12, 1123–1150. MR 579792, DOI 10.1080/00927878008822512
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 121 (1994), 57-66
- MSC: Primary 16G70
- DOI: https://doi.org/10.1090/S0002-9939-1994-1181169-8
- MathSciNet review: 1181169