INTEGRATION OF VECTOR-VALUED
PSEUDO-ALMOST PERIODIC FUNCTIONS

CHUANYI ZHANG

(Communicated by J. Marshall Ash)

ABSTRACT. A necessary and sufficient condition is given to show that the indefinite integral of a vector-valued pseudo-almost periodic function is again pseudo-almost periodic. Then we use this result to answer a question about weakly almost periodic functions.

Throughout this paper, X denotes a Banach space and J_a stands for $[a, \infty)$ when $a \in \mathbb{R}$ and for \mathbb{R} when $a = -\infty$; $C(J_a, X)$ denotes the space of all bounded continuous functions from J_a to X. Also, m denotes Lebesgue measure on \mathbb{R}.

Let $f \in C(\mathbb{R}, X)$. The translate of f by $s \in \mathbb{R}$ is the function $R_s f(t) = f(t + s)$, $t \in \mathbb{R}$. f is called (weakly) almost periodic if the set $\{R_s f : s \in \mathbb{R}\}$ is (weakly) relatively compact in $C(\mathbb{R}, X)$ [3]. Denote by $WAP(\mathbb{R}, X)$ all such functions.

In case $X = \mathbb{C}$, we will omit X from our notation and write, for example, $C(J_a)$ for $C(J_a, \mathbb{C})$.

For a function $f \in A P(\mathbb{R})$, the classical Bohl-Bohr integration theorem (cf. [2]) asserts that the indefinite integral $F(t) = \int_0^t f(u) du$ will also be almost periodic on \mathbb{R} whenever F is bounded. For $f \in A P(\mathbb{R}, X)$, there is Kadets's generalized Bohl-Bohr theorem (see [4]). A question arises naturally in $WAP(\mathbb{R}, X)$; that is, if $f \in WAP(\mathbb{R}, X)$, what is a necessary and sufficient condition for F to be again in $WAP(\mathbb{R}, X)$?

Let $f \in WAP(\mathbb{R}, X)$. Then $f = g + \varphi$, where $g \in AP(\mathbb{R}, X)$ and $\varphi \in WAP_0(\mathbb{R}, X)$, the subspace of $WAP(\mathbb{R}, X)$ whose members have the zero function in the weak closure of the set of translates [3, Theorem 4.11]. The difficult part of answering the question is to handle the function φ. For this purpose we introduce a new generalization of almost periodic functions, which we call pseudo-almost periodic functions.

In this paper, we first set up some theorems of the indefinite integral of a pseudo-almost periodic function from J_a to X. Then we use these theorems to answer the question.

Received by the editors June 30, 1992 and, in revised form, August 20, 1992.
1991 Mathematics Subject Classification. Primary 43A60; Secondary 28B05.
Key words and phrases. Almost periodic functions, pseudo-almost periodic functions, integral.

©1994 American Mathematical Society
0002-9939/94 $1.00 + .25$ per page
Definition 1. A subset \(P \) of \(\mathbb{J}_a \) is said to be relatively dense in \(\mathbb{J}_a \) if there exists a number \(l > 0 \) such that \([t, t + l] \cap P \neq \emptyset \) \((t \in \mathbb{J}_a) \).

A function \(g \in \mathcal{C}(\mathbb{R}, X) \) is in \(\mathcal{A} \mathcal{P}(\mathbb{R}, X) \) if and only if, for \(\epsilon > 0 \), the set
\[
P(\epsilon) = \{ \tau \in \mathbb{R} : \|g(t + \tau) - g(t)\| < \epsilon \text{ for all } t \in \mathbb{R} \}
\]
is relatively dense in \(\mathbb{R} \) [2, Theorem 6.6]. A function \(g \in \mathcal{A} \mathcal{P}(\mathbb{R}, X) \) is uniformly continuous.

Set
\[
\mathcal{A} \mathcal{P}_0(\mathbb{J}_a, X) = \left\{ \varphi \in \mathcal{C}(\mathbb{J}_a, X) : \lim_{t \to \infty} \frac{1}{t-a} \int_a^t \|\varphi(s)\| ds = 0 \right\}
\]
Definition 2. A function \(f \in \mathcal{C}(\mathbb{J}_a, X) \) is called pseudo-almost periodic if
\[
f = g|_{\mathbb{J}_a} + \varphi,
\]
where \(g \in \mathcal{A} \mathcal{P}(\mathbb{R}, X) \) and \(\varphi \in \mathcal{A} \mathcal{P}_0(\mathbb{J}_a, X) \). Denote by \(\mathcal{A} \mathcal{P}(\mathbb{J}_a, X) \) all such functions. As in [7], \(g \) and \(\varphi \) are called the almost periodic component and the ergodic perturbation of \(f \), respectively.

Definition 3. A closed subset \(C \) of \(\mathbb{J}_a \) is said to be an ergodic zero set in \(\mathbb{J}_a \) if \(m(C \cap [a, t])/(t-a) \to 0 \) as \(t \to \infty \) \((m(C \cap [-t, t])/2t \to 0 \) as \(t \to \infty \), when \(a = -\infty \).

The proof of the following proposition is straightforward.

Proposition 4. A function \(\varphi \in \mathcal{C}(\mathbb{J}_a, X) \) is in \(\mathcal{A} \mathcal{P}_0(\mathbb{J}_a, X) \) if and only if, for \(\epsilon > 0 \), the set \(C_\epsilon = \{ t \in \mathbb{J}_a : \|\varphi(t)\| \geq \epsilon \} \) is an ergodic zero subset in \(\mathbb{J}_a \).

Proposition 5. Let \(C \) be an ergodic zero set in \(\mathbb{J}_a \). Then for any \(\delta > 0 \) and \(L > 0 \), there exists an interval \((u, v) \subset \mathbb{J}_a \) with the properties that \(v - u > L \) and \(m(C \cap (u, v)) < \delta \).

Proof. If such a \((u, v) \) does not exist, one sees readily that
\[
\lim_{t \to \infty} m(C \cap [a, t])/t = \delta/2L
\]
\[
(\liminf_{t \to \infty} m(C \cap [-t, t])/2t \geq \delta/2L, \text{ when } a = -\infty).
\]

Using Propositions 4 and 5, we can show that, for \(g \in \mathcal{A} \mathcal{P}(\mathbb{R}, X) \), if \(g|_{\mathbb{J}_a} \in \mathcal{A} \mathcal{P}_0(\mathbb{J}_a, X) \), then \(g = 0 \). In fact, since \(g \) is uniformly continuous, for \(\epsilon > 0 \) there is \(\delta > 0 \) such that \(\|g(t') - g(t'')\| < \epsilon \) whenever \(t', t'' \in \mathbb{R} \) with \(|t' - t''| < \delta \). Let \(l > 0 \) be the number for \(P(\epsilon) \) as in Definition 1, let \(C_\epsilon \) be the ergodic zero subset for \(g|_{\mathbb{J}_a} \in \mathcal{A} \mathcal{P}_0(\mathbb{J}_a, X) \) in \(\mathbb{J}_a \) as in Proposition 4, and let \(L = 2l \). By Proposition 5, for \(\delta > 0 \) and \(L > 0 \), there exists an interval \((u, v) \subset \mathbb{J}_a \) with the properties that \(v - u > L \) and \(m(C \cap (u, v)) < \delta \). It follows that \(\|g(t)\| < 2\epsilon, t \in (u, v) \). For \(t \in \mathbb{R} \), since \(v - u > 2l \), one can find \(\tau \in P(\epsilon) \) such that \(t + \tau \in (u, v) \). Therefore, \(\|g(t)\| \leq \|g(t) - g(t + \tau)\| + \|g(t + \tau)\| < 3\epsilon \). Since \(\epsilon > 0 \) is arbitrary, \(g = 0 \). Thus
\[
\mathcal{A} \mathcal{P}(\mathbb{J}_a, X) = \mathcal{A} \mathcal{P}(\mathbb{R}, X)|_{\mathbb{J}_a} \oplus \mathcal{A} \mathcal{P}_0(\mathbb{J}_a, X).
\]

To show the next theorem, we need the following lemma.
Lemma 6. Let P be relatively dense in J_a, and let C be an ergodic zero set in J_a. Then, for any given interval $[c, d] \subset \mathbb{R}$ and $\delta > 0$, there exist $(u, v) \subset J_a$ and $\tau \in P$ such that

$$[c, d] + \tau \subset (u, v) \quad \text{and} \quad m(C \cap (u, v)) < \delta.$$

Proof. Let $l > 0$ be the number for P as in Definition 1, and let $L = l + (d - c)$. By Proposition 5, there exists an interval $(u, v) \subset J_a$ such that $m(C \cap (u, v)) < \delta$ and $L < v - u$. Since we can assume that $u - c \in J_a$, we can choose $\tau \in [u - c, u - c + l] \cap P$. If $t \in [c, d]$,

$$u < c + \tau \leq t + \tau \leq d + \tau \leq d + u - c + l < v;$$

that is, $[c, d] + \tau \subset (u, v)$.

Theorem 7. Let $a \in \mathbb{R}$, and let $f \in \mathcal{PA}(J_a, X)$. Define $F : J_a \rightarrow X$ by $F(t) = \int_a^t f(u)\, du$. Then $F \in \mathcal{PA}(J_a, X)$ if and only if there is a vector $A \in X$ such that $F - A \in \mathcal{PA}(J_a, X)$.

Proof. The sufficiency is obvious. Now we show the necessity.

Since $F \in \mathcal{PA}(J_a, X)$, $F = G|_{J_a} + \Phi$, where $G \in \mathcal{AP}(\mathbb{R}, X)$ and $\Phi \in \mathcal{PA}(J_a, X)$. To show the necessity, we need to show that G is a constant vector in X.

If it is not, there are $t', t'' \in \mathbb{R}$ with $t' < t''$ such that

$$\|G(t') - G(t'')\| = \epsilon > 0.$$

Since $G \in \mathcal{AP}(\mathbb{R}, X)$, for any $\tau \in P(\epsilon/4)$,

$$\|G(t') - G(t' + \tau)\| < \epsilon/4 \quad \text{and} \quad \|G(t'') - G(t'' + \tau)\| < \epsilon/4.$$

Combining these three inequalities, we have

$$\|G(t' + \tau) - G(t'' + \tau)\| > \epsilon/2 \quad (\tau \in P(\epsilon/4)).$$

Φ is uniformly continuous on J_a since F and G are. Let $\delta > 0$ be such that $\|f\|\delta < \epsilon/8$ and

$$\|\Phi(t_1) - \Phi(t_2)\| < \epsilon/16 \quad (t_1, t_2 \in J_a, \ |t_1 - t_2| < \delta).$$

Set

$$C_1 = \left\{ t \in J_a : \|\Phi(t)\| \geq \min \left\{ \frac{\epsilon}{8(t'' - t')}, \frac{\epsilon}{16} \right\} \right\},$$

$$C_2 = \left\{ t \in J_a : \|f(t)\| \geq \min \left\{ \frac{\epsilon}{8(t'' - t')}, \frac{\epsilon}{16} \right\} \right\},$$

and $C_e = C_1 \cup C_2$. It follows from Proposition 4 that C_e is an ergodic zero subset in J_a. By Lemma 6, there exist a $\tau_0 \in P(\epsilon/4)$ and $(u, v) \subset J_a$ such that $[t', t''] + \tau_0 \subset (u, v)$ and $m((u, v) \cap C_e) < \delta$.

We claim that $\|\Phi(t' + \tau_0)\| < \epsilon/8$ and $\|\Phi(t'' + \tau_0)\| < \epsilon/8$. In fact, if $t' + \tau_0 \in (u, v) \setminus C_e$, then $\|\Phi(t' + \tau_0)\| < \epsilon/16$; if $t' + \tau_0 \in (u, v) \cap C_e$, then by (2)

$$\|\Phi(t' + \tau_0)\| \leq \|\Phi(t' + \tau_0) - \Phi(t)\| + \|\Phi(t)\| < \epsilon/8,$$

where $t \in (u, v) \setminus C_e$ is such that $|t - (t' + \tau_0)| < \delta$.

Similarly we can show that $\Phi(t'' + \tau_0) < \epsilon/8$.
Now
\[||G(t' + \tau_0) - G(t'' + \tau_0)|| \]
\[\leq \left| \int_a^{t' + \tau_0} - \int_a^{t'' + \tau_0} f(u) \, du \right| + ||\Phi(t' + \tau_0)|| + ||\Phi(t'' + \tau_0)|| \]
\[< \int_a^{t' + \tau_0} f(u) \, du + \varepsilon \]
\[= \left(\int_{[t' + \tau_0, t'' + \tau_0] \cap C_c} f(u) \, du + \int_{[t' + \tau_0, t'' + \tau_0] \cap C_c} f(u) \, du \right) + \frac{\varepsilon}{4} \]
\[\leq |t'' - t'| \cdot \frac{\varepsilon}{8(t'' - t')} + \frac{\varepsilon}{4} + \frac{\varepsilon}{2} < \varepsilon, \]
which contradicts (1).

Denote by \(\mathcal{C}_0(J_a, X) \) the set of functions \(f \in \mathcal{C}(J_a, X) \) such that \(f(t) \to 0 \) as \(t \to \infty \). A function \(f \in \mathcal{C}(J_a, X) \) is called asymptotically almost periodic if \(f = g|_{J_a} + \varphi \), where \(g \in \mathcal{A}(\mathbb{R}, X) \) and \(\varphi \in \mathcal{C}_0(J_a, X) \) [6]. Denote by \(\mathcal{A}(J_a, X) \) all such functions \(f \). Since \(\mathcal{C}_0(J_a, X) \subset \mathcal{P}(J_a, X) \), \(\mathcal{A}(J_a, X) \subset \mathcal{P}(J_a, X) \). We have

Corollary 8 [5, 4.2]. Let \(a \in \mathbb{R} \), let \(f \in \mathcal{C}(J_a, X) \), and let \(F : J_a \to X \) be defined by \(F(t) = \int_a^t f(u) \, du \). Then \(F \in \mathcal{A}(J_a, X) \) if and only if \(\lim_{t \to \infty} F(t) \) exists.

Proof. Necessity. Since \(F \in \mathcal{A}(J_a, X) \), \(F = G|_{J_a} + \Phi' \), where \(G \in \mathcal{A}(\mathbb{R}, X) \) and \(\Phi' \in \mathcal{C}_0(J_a, X) \). By Theorem 7, \(F = A + \Phi \), where \(A \in X \) and \(\Phi \in \mathcal{P}(J_a, X) \). The uniqueness of the decomposition implies that \(G = A \) and \(\Phi \in \mathcal{C}_0(J_a, X) \). Therefore, \(F(t) = \int_a^t f(u) \, du \to A \) as \(t \to \infty \).

The sufficiency is easy to prove.

The following example of [5, 4.1] can also be used here to show that the bounded integral of a pseudo-almost periodic function may fail to be pseudo-almost periodic even in the numerical case.

Example 9. Consider the function \(f : J_1 \to \mathbb{R} \) defined by
\[f(t) = \left(\frac{1}{t} \right) \cos(\log t) \quad (t \in J_1) \]
Since \(f(t) \to 0 \) as \(t \to \infty \), \(f(t) \in \mathcal{P}(J_1) \). The corresponding indefinite integral
\[F(t) = \int_1^t f(u) \, du = \sin(\log t) \quad (t \in J_1) \]
defines a bounded function on \(J_1 \); however, \(F \notin \mathcal{A}(J_a, X) \). That is because
\[\frac{1}{r} \int_1^r |\sin(\log t)| \, dt \neq 0 \]
as \(r \to \infty \) and neither does \(\frac{1}{r} \int_1^r |\sin(\log t)| - A |dt \) for any \(A \in \mathbb{C} \). But, if \(F \in \mathcal{P}(J_a, X) \), \(F \) differs from some member of \(\mathcal{P}(J_a, X) \) by a constant (Theorem 7).

Let \(f \in \mathcal{P}(J_a, X) \), and define \(F(t) = \int_a^t f(u) \, du \) for \(t \in J_a \). To show \(F \in \mathcal{P}(J_a, X) \), we need to treat two cases. Theorem 7 allows us to control
the ergodic perturbation of f. We utilize the work of Kadets [4] in treating the almost periodic part of f. Also, as in [5], we need the following lemmas. In the lemmas, for a subset B of X, $\overline{conv}(B)$ denotes the closed convex circled hull of B.

Lemma 10. Let $a \in \mathbb{R}$, and let $f \in \mathcal{AP}(\mathbb{R}, X)$. Let g and φ be the almost periodic component and the ergodic perturbation of f, respectively. If $F(t) = \int_a^t f(u) \, du$ and $G_a(t) = \int_a^t g(u) \, du$ for $t \in \mathbb{R}$, then

$$G_a(\mathbb{R}) \subset 2\overline{conv}(F(\mathbb{R})).$$

Proof. Suppose that the conclusion does not hold; we can find a $t_0 \in \mathbb{R}$ such that $G_a(t_0) \notin 2\overline{conv}(F(\mathbb{R}))$. In this case, we point out that $\|\varphi\| \neq 0$; otherwise we will have the conclusion. Also, $t_0 \neq a$ because $G_a(a) = 0 \in 2\overline{conv}F(\mathbb{R})$. By the Hahn-Banach theorem, there is an $x^* \in X^*$ such that

$$\min_{y \in 2\overline{conv}(F(\mathbb{R}))} |x^*(G_a(t_0) - y)| = \epsilon > 0.$$

Let

$$0 < \delta = \min \left\{ \frac{\epsilon}{3\|x^*\|(t_0 - a)}, \frac{\epsilon}{3\|x^*\|\|\varphi\|} \right\}$$

and

$$C = \{t \in \mathbb{R} : \|\varphi(t)\| \geq \delta\}.$$

By Proposition 4, C is an ergodic zero subset of \mathbb{R}. For $\delta > 0$ and $g \in \mathcal{AP}(\mathbb{R}, X)$, let $P(\delta)$ be the relatively dense subset of \mathbb{R}. By Lemma 6, there are $(u, v) \subset \mathbb{R}$ and a $\tau \in P(\delta)$ such that $[a, t_0] + \tau \subset (u, v)$ and $m((u, v) \cap C) < \delta$. Now,

$$\epsilon = \min_{y \in 2\overline{conv}(F(\mathbb{R}))} |x^*(G_a(t_0) - y)|$$

$$\leq |x^*\{G_a(t_0) - [F(t_0 + \tau) - F(a + \tau)]\}|$$

$$\leq |x^*\left\{ G_a(t_0) - \int_a^{t_0} g(u + \tau) \, du \right\}|$$

$$+ |x^*\left\{ \int_a^{t_0} g(u + \tau) \, du - \int_a^{t_0+\tau} f(u) \, du \right\}|$$

$$\leq \|x^*\| \int_a^{t_0} |g(u) - g(u + \tau)| \, du + |x^*\left\{ \int_a^{t_0} \varphi(u + \tau) \, du \right\}|$$

$$\leq \|x^*\|((t_0 - a)\delta + \int_a^{t_0} |x^*\{\varphi(u + \tau)\}| \, du$$

$$= \|x^*\|((t_0 - a)\delta + \int_{[a+\tau, t_0+\tau]}C \, |x^*\{\varphi(u)\}| \, du + \int_{[a+\tau, t_0+\tau] \setminus C} \, |x^*\{\varphi(u)\}| \, du$$

$$< \|x^*\|((t_0 - a)\delta + \delta \|\varphi\|\|x^*\| < \epsilon,$$

a contradiction.

Lemma 11 [5, 4.5]. Let $a \in \mathbb{R}$, and let $g \in \mathcal{AP}(\mathbb{R}, X)$. Put $G_a(t) = \int_a^t g(u) \, du$ for $t \in \mathbb{R}$, and set

$$G(t) = \begin{cases} \int_a^t g(u) \, du, & t \in \mathbb{R}, \\ -\int_t^a g(u) \, du, & t \in \mathbb{R} \setminus \mathbb{R} \setminus \mathbb{R}. \end{cases}$$
Then
\[G(\mathbb{R}) \subset \text{G}([0,|a|]) + 2c\text{o}(G_a(\mathbb{J}_a)). \]

Taken together, Lemmas 10 and 11 yield the following result.

Lemma 12. Let \(a, f, g, \varphi, F\), and \(G_a\) be as in Lemma 10. If \(F(\mathbb{J}_a)\) is bounded [weakly relatively compact] \{relatively compact\} in \(X\), then the same is true for \(G(\mathbb{R})\).

Let \(\mathcal{B}(\mathbb{J}_a, X)\) denote the set of all bounded functions from \(\mathbb{J}_a\) to \(X\). Now we have the following theorem.

Theorem 13. Let \(a, f, g, \varphi, \) and \(F\) be as in Lemma 10. Suppose either

(i) \(F \in \mathcal{B}(\mathbb{J}_a, X)\) and \(X\) does not contain an isomorphic copy of \(c_0\), or

(ii) \(F(\mathbb{J}_a)\) is weakly relatively compact in \(X\).

Then \(F \in \mathcal{WAP}(\mathbb{J}_a, X)\) if and only if there is an \(A \in X\) such that \(\Phi\), defined by

\[\Phi(x) = \int_0^x \varphi(u) \, du - A, \]

is in \(\mathcal{WAP}_0(\mathbb{J}_a, X)\).

Proof. Necessity. We define the indefinite integrals \(G_a : \mathbb{J}_a \to X\) and \(G : \mathbb{R} \to X\) of \(g\) as in Lemma 11.

Since (i) or (ii) is satisfied, Lemma 12 shows that at least one of the following holds: \(c_0 \not\subset X\), \(G(\mathbb{R})\) is bounded, and \(G(\mathbb{R})\) is weakly relatively compact in \(X\). By [4, Theorem 1] in case (i), or by [4, Theorem 2] in case (ii), \(G\) is almost periodic. Therefore, \(G_a = G|_{\mathbb{J}_a} - G(a) \in \mathcal{WAP}(\mathbb{J}_a, X)\), as is \(\psi\), where

\[\psi(t) = \int_a^t \varphi(u) \, du = F(t) - \int_a^t g(u) \, du. \]

Now the necessity follows from Theorem 7.

The sufficiency is easy to prove; we omit the proof.

The following theorem was shown in [5, Theorem 4.11].

Theorem 14. Let \(f = g + \varphi\), where \(g \in \mathcal{A}(\mathbb{R}, X)\) and \(\varphi \in \mathcal{C}_0(\mathbb{R}, X)\). Define \(F : \mathbb{R} \to X\) by \(F(t) = \int_0^t f(u) \, du\). Then \(F\) is in \(\mathcal{WAP}(\mathbb{R}, X)\) if and only if either

(i) \(F(\mathbb{R})\) is weakly relatively compact in \(X\) or

(ii) \(c_0 \not\subset X\) and \(F \in \mathcal{B}(\mathbb{R}, X)\),

and the following limits exist and satisfy

\[\lim_{t \to -\infty} \int_0^t \varphi(u) \, du = \lim_{t \to -\infty} \int_0^t \varphi(u) \, du. \]

Since \(\mathcal{C}_0(\mathbb{R}, X) \subset \mathcal{WAP}_0(\mathbb{R}, X)\), Russ and Summers pointed out in [5, p. 33] that Theorem 14 does not answer the question: when is the integral of an \(f \in \mathcal{WAP}(\mathbb{R}, X)\) again in \(\mathcal{WAP}(\mathbb{R}, X)\)?

The next theorem answers this question. Before stating the theorem, we show that if \(f \in \mathcal{WAP}(\mathbb{R}, X)\) and \(x^* \in X^*\), then \(x^* f|_{\mathbb{J}_0} \in \mathcal{WAP}(\mathbb{J}_0)\), where \(\mathbb{J}_0 = [0, \infty)\). In fact, \(f = g + \varphi\), where \(g \in \mathcal{A}(\mathbb{R}, X)\) and \(\varphi \in \mathcal{WAP}_0(\mathbb{R}, X)\) [3, Theorem 4.11]. \(x^* g \in \mathcal{A}(\mathbb{R})\), and \(x^* \varphi \in \mathcal{WAP}_0(\mathbb{R})\). Since \(\mathcal{WAP}(\mathbb{R}) \subset \mathcal{WAP}_0(\mathbb{R})\) [1, 4.3.13], \(x^* \varphi \in \mathcal{WAP}_0(\mathbb{R})\). So \(x^* f|_{\mathbb{J}_0} \in \mathcal{WAP}_0(\mathbb{J}_0)\) and \(x^* f|_{\mathbb{J}_0} \in \mathcal{WAP}(\mathbb{J}_0)\).
Theorem 15. Let \(f \in \mathcal{WAP}(\mathbb{R}, X) \). Define \(F: \mathbb{R} \to X \) by \(F(t) = \int_0^t f(u) \, du \). Then \(F \) is in \(\mathcal{WAP}(\mathbb{R}, X) \) if and only if either

(i) \(F(\mathbb{R}) \) is weakly relatively compact in \(X \), or

(ii) \(c_0 \not\subset X \) and \(F \in \mathcal{B}(\mathbb{R}, X) \),

and there is a vector \(A \in X \) such that

\[
\psi - A \in \mathcal{WAP}_0(\mathbb{R}, X),
\]

where \(\psi : \mathbb{R} \to X \) is defined by \(\psi(t) = \int_0^t \varphi(u) \, du \).

Proof. Set \(G(t) = \int_0^t g(u) \, du \) for \(t \in \mathbb{R} \). With a proof similar to that for Lemma 12, we can show that if \(F(\mathbb{R}) \) is bounded (weakly relatively compact) in \(X \), then the same is true for \(G(\mathbb{R}) \).

Necessity. Since \(F \in \mathcal{WAP}(\mathbb{R}, X) \), \(F(\mathbb{R}) \) is weakly relatively compact, as is \(G(\mathbb{R}) \). So \(G \in \mathcal{A}(\mathbb{R}, X) \) [4, Theorem 2].

Now we show that (4) holds for some \(A \in X \). Since \(\psi \in \mathcal{WAP}(\mathbb{R}, X) \),

\[
\psi = G_1 + \Phi_1,
\]

where \(G_1 \in \mathcal{A}(\mathbb{R}, X) \) and \(\Phi_1 \in \mathcal{WAP}_0(\mathbb{R}, X) \). We claim that \(G_1 \) is a constant function. For, suppose that there are \(t_1, t_2 \in \mathbb{R} \) such that \(G_1(t_1) \neq G_1(t_2) \). The almost periodicity of \(G_1 \) makes it possible to assume that \(t_1 \) and \(t_2 \) are in \(J_0 \). Then we can find a \(x^* \in X^* \) such that \(x^*G_1(t_1) \neq x^*G_1(t_2) \).

Since \(\psi \in \mathcal{WAP}(\mathbb{R}, X) \), \(x^*\psi|_{J_0} \in \mathcal{AP}(J_0) \). By Theorem 7 there are an \(A_{x^*} \in \mathbb{C} \) and a \(\Phi_{x^*} \in \mathcal{AP}_0(J_0) \) such that

\[
x^*\psi(t) = \int_0^t x^*\varphi(u) \, du = A_{x^*} + \Phi_{x^*}(t) \quad (t \in J_0).
\]

Comparing (6) with (5) and using the uniqueness of the decomposition, we conclude that \(x^*G_1 \) is a constant function, a contradiction.

Sufficiency. It is obvious that \(\psi \in \mathcal{WAP}(\mathbb{R}, X) \) if (4) holds for some \(A \in X \). By the first paragraph in the proof and [4, Theorems 1 and 2], either (i) or (ii) is a sufficient condition for \(G \) to be in \(\mathcal{A}(\mathbb{R}, X) \), so \(F \in \mathcal{WAP}(\mathbb{R}, X) \).

Remark 16. Theorem 14 is a corollary of Theorem 15. In fact, in Theorem 14, \(A = \lim_{t \to \infty} \int_0^t \varphi(u) \, du \).

Acknowledgment

The contents of this paper is a part of the author's Ph.D. work under the supervision of Professor P. Milnes at the University of Western Ontario. The author would like to acknowledge his indebtedness to his supervisor, Professor P. Milnes, for advice and encouragement given while this paper was being written.

Bibliography

DEPARTMENT OF MATHEMATICS, THE UNIVERSITY OF BRITISH COLUMBIA, VANCOUVER, CANADA V6T 1Z2

E-mail address: czhang@math.ubc.ca