Union theorem for cohomological dimension: a simple counterexample
HTML articles powered by AMS MathViewer
- by Jerzy Dydak
- Proc. Amer. Math. Soc. 121 (1994), 295-297
- DOI: https://doi.org/10.1090/S0002-9939-1994-1205489-3
- PDF | Request permission
Abstract:
An elementary counterexample to the Union Theorem for cohomological dimension with coefficients in ${\mathbf {Z}}/{2^\infty }$ is presented.References
- A. Dranishnikov, D. Repovš, and E. Ščepin, On the failure of the Urysohn-Menger sum formula for cohomological dimension, preprint.
J. Dydak and J. J. Walsh, Aspects of cohomological dimension for principal ideal domains (in preparation).
- V. I. Kuz′minov, Homological dimension theory, Uspehi Mat. Nauk 23 (1968), no. 5 (143), 3–49 (Russian). MR 0240813
- Leonard R. Rubin, Characterizing cohomological dimension: the cohomological dimension of $A\cup B$, Topology Appl. 40 (1991), no. 3, 233–263. MR 1124840, DOI 10.1016/0166-8641(91)90108-X
- Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0210112
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 121 (1994), 295-297
- MSC: Primary 55M10; Secondary 54F45, 54G20
- DOI: https://doi.org/10.1090/S0002-9939-1994-1205489-3
- MathSciNet review: 1205489