## Correspondence theorems for nondegenerate modules and their endomorphism rings

HTML articles powered by AMS MathViewer

- by Zheng Ping Zhou PDF
- Proc. Amer. Math. Soc.
**121**(1994), 25-32 Request permission

## Abstract:

Let $_RU$ be a left*R*-module whose Morita context is nondegenerate and $S = {\text {End}}(U)$. We show the following: (1) There is a projectivity (that is, an order-preserving bijection) between the complement submodules of $_RU$ and the complement left ideals of

*S*; (2)

*S*is a left CS ring if and only if $_RU$ is a CS module; (3)

*S*is a Baer and left CS ring if and only if $_RU$ is a nonsingular and CS module. Special cases include some earlier works.

## References

- S. A. Amitsur,
*Rings of quotients and Morita contexts*, J. Algebra**17**(1971), 273–298. MR**414604**, DOI 10.1016/0021-8693(71)90034-2 - Frank W. Anderson and Kent R. Fuller,
*Rings and categories of modules*, Graduate Texts in Mathematics, Vol. 13, Springer-Verlag, New York-Heidelberg, 1974. MR**0417223**, DOI 10.1007/978-1-4684-9913-1 - A. W. Chatters and S. M. Khuri,
*Endomorphism rings of modules over nonsingular CS rings*, J. London Math. Soc. (2)**21**(1980), no. 3, 434–444. MR**577719**, DOI 10.1112/jlms/s2-21.3.434 - Carl Faith,
*Modules finite over endomorphism ring*, Lectures on rings and modules (Tulane Univ. Ring and Operator Theory Year, 1970-1971, Vol. I), Lecture Notes in Math., Vol. 246, Springer, Berlin, 1972, pp. 145–189. MR**0342541** - Jonathan S. Golan,
*Torsion theories*, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 29, Longman Scientific & Technical, Harlow; John Wiley & Sons, Inc., New York, 1986. MR**880019** - John Hutchinson and Julius Zelmanowitz,
*Quotient rings of endomorphism rings of modules with zero singular submodule*, Proc. Amer. Math. Soc.**35**(1972), 16–20. MR**297805**, DOI 10.1090/S0002-9939-1972-0297805-X - John J. Hutchinson,
*Endomorphism rings of torsionless modules*, Comm. Algebra**15**(1987), no. 9, 1921–1927. MR**898301**, DOI 10.1080/00927878708823513 - Soumaya Makdissi Khuri,
*Properties of endomorphism rings of modules and their duals*, Proc. Amer. Math. Soc.**96**(1986), no. 4, 553–559. MR**826480**, DOI 10.1090/S0002-9939-1986-0826480-8 - Soumaya Makdissi Khuri,
*Correspondence theorems for modules and their endomorphism rings*, J. Algebra**122**(1989), no. 2, 380–396. MR**999081**, DOI 10.1016/0021-8693(89)90224-X - B. R. McDonald,
*Endomorphism rings of infinitely generated projective modules*, J. Algebra**45**(1977), no. 1, 69–82. MR**427376**, DOI 10.1016/0021-8693(77)90361-1 - J. C. McConnell and J. C. Robson,
*Noncommutative Noetherian rings*, Pure and Applied Mathematics (New York), John Wiley & Sons, Ltd., Chichester, 1987. With the cooperation of L. W. Small; A Wiley-Interscience Publication. MR**934572** - Bruno J. Müller,
*The quotient category of a Morita context*, J. Algebra**28**(1974), 389–407. MR**447336**, DOI 10.1016/0021-8693(74)90048-9 - Bo Stenström,
*Rings of quotients*, Die Grundlehren der mathematischen Wissenschaften, Band 217, Springer-Verlag, New York-Heidelberg, 1975. An introduction to methods of ring theory. MR**0389953**, DOI 10.1007/978-3-642-66066-5 - Birge Zimmermann-Huisgen,
*Endomorphism rings of self-generators*, Pacific J. Math.**61**(1975), no. 2, 587–602. MR**404322**, DOI 10.2140/pjm.1975.61.587

## Additional Information

- © Copyright 1994 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**121**(1994), 25-32 - MSC: Primary 16S50
- DOI: https://doi.org/10.1090/S0002-9939-1994-1211594-8
- MathSciNet review: 1211594