Path properties for $l^ \infty$-valued Gaussian processes
HTML articles powered by AMS MathViewer
- by Miklós Csörgő, Zheng Yan Lin and Qi Man Shao
- Proc. Amer. Math. Soc. 121 (1994), 225-236
- DOI: https://doi.org/10.1090/S0002-9939-1994-1231032-9
- PDF | Request permission
Abstract:
We prove moduli of continuity results for ${l^\infty }$-valued Gaussian processes in general, as well as for ${l^\infty }$-valued Ornstein-Uhlenbeck processes in particular.References
- Endre Csáki and Miklós Csörgő, Fernique type inequalities for not necessarily Gaussian processes, C. R. Math. Rep. Acad. Sci. Canada 12 (1990), no. 5, 149–154. MR 1077478
- Endre Csáki and Miklós Csörgő, Inequalities for increments of stochastic processes and moduli of continuity, Ann. Probab. 20 (1992), no. 2, 1031–1052. MR 1159584
- E. Csáki, M. Csörgő, Z. Y. Lin, and P. Révész, On infinite series of independent Ornstein-Uhlenbeck processes, Stochastic Process. Appl. 39 (1991), no. 1, 25–44. MR 1135082, DOI 10.1016/0304-4149(91)90029-C
- Endre Csáki, Miklós Csörgő, and Qi Man Shao, Fernique type inequalities and moduli of continuity for $l^2$-valued Ornstein-Uhlenbeck processes, Ann. Inst. H. Poincaré Probab. Statist. 28 (1992), no. 4, 479–517 (English, with English and French summaries). MR 1193082 —, Moduli of continuity for ${l^p}$-valued Gaussian processes, Tech. Rep. Ser. Lab. Res. Stat. Probab. No. 160, Carleton University-University of Ottawa.
- Miklós Csörgő and Zheng Yan Lin, On moduli of continuity for Gaussian and $l^2$-norm squared processes generated by Ornstein-Uhlenbeck processes, Canad. J. Math. 42 (1990), no. 1, 141–158. MR 1043516, DOI 10.4153/CJM-1990-009-6 M. Csörgő and Q. M. Shao, Strong limit theorems for large and small increments of ${l^p}$-valued Gaussian processes, Ann. Probab. 21 (1993).
- D. A. Dawson, Stochastic evolution equations, Math. Biosci. 15 (1972), 287–316. MR 321178, DOI 10.1016/0025-5564(72)90039-9
- Xavier Fernique, La régularité des fonctions aléatoires d’Ornstein-Uhlenbeck à valeurs dans $l^2;$ le cas diagonal, C. R. Acad. Sci. Paris Sér. I Math. 309 (1989), no. 1, 59–62 (French, with English summary). MR 1004940 —, Sur la régularité de certaines fonctions aléatoires d’Ornstein-Uhlenbeck, Ann. Inst. H. Poincaré Probab. Statist. 26 (1990), 399-417.
- I. Iscoe, M. B. Marcus, D. McDonald, M. Talagrand, and J. Zinn, Continuity of $l^2$-valued Ornstein-Uhlenbeck processes, Ann. Probab. 18 (1990), no. 1, 68–84. MR 1043937, DOI 10.1214/aop/1176990938
- I. Iscoe and D. McDonald, Large deviations for $l^2$-valued Ornstein-Uhlenbeck processes, Ann. Probab. 17 (1989), no. 1, 58–73. MR 972771, DOI 10.1214/aop/1176991494 B. Schmuland, Dirichlet forms and infinite dimensional Ornstein-Uhlenbeck processes, Ph.D. Dissertation, Carleton University, Ottawa, 1987.
- Byron Schmuland, Some regularity results on infinite-dimensional diffusions via Dirichlet forms, Stochastic Anal. Appl. 6 (1988), no. 3, 327–348. MR 949683, DOI 10.1080/07362998808809152
- B. Schmuland, Regularity of $l^2$-valued Ornstein-Uhlenbeck processes, C. R. Math. Rep. Acad. Sci. Canada 10 (1988), no. 2, 119–124. MR 933225
- Byron Schmuland, Moduli of continuity for some Hilbert space valued Ornstein-Uhlenbeck processes, C. R. Math. Rep. Acad. Sci. Canada 10 (1988), no. 4, 197–201. MR 955099
- B. Schmuland, Sample path properties of $l^p$-valued Ornstein-Uhlenbeck processes, Canad. Math. Bull. 33 (1990), no. 3, 358–366. MR 1077111, DOI 10.4153/CMB-1990-060-9
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 121 (1994), 225-236
- MSC: Primary 60G15; Secondary 60F15, 60G10, 60G17
- DOI: https://doi.org/10.1090/S0002-9939-1994-1231032-9
- MathSciNet review: 1231032