The compact neighborhood extension property and local equi-connectedness
HTML articles powered by AMS MathViewer
- by Nguyen To Nhu and Katsuro Sakai
- Proc. Amer. Math. Soc. 121 (1994), 259-265
- DOI: https://doi.org/10.1090/S0002-9939-1994-1232141-0
- PDF | Request permission
Abstract:
It is shown that any $\sigma$-compact metrizable space is an AR (ANR) if and only if it is (locally) equi-connected and has the compact (neighborhood) extension property.References
- Richard F. Arens and James Eells Jr., On embedding uniform and topological spaces, Pacific J. Math. 6 (1956), 397–403. MR 81458, DOI 10.2140/pjm.1956.6.397
- Jos van der Bijl and Jan van Mill, Linear spaces, absolute retracts, and the compact extension property, Proc. Amer. Math. Soc. 104 (1988), no. 3, 942–952. MR 964878, DOI 10.1090/S0002-9939-1988-0964878-X
- D. W. Curtis and J. van Mill, The compact extension property, General topology and its relations to modern analysis and algebra, VI (Prague, 1986) Res. Exp. Math., vol. 16, Heldermann, Berlin, 1988, pp. 115–119. MR 952598
- T. Dobrowolski, On extending mappings into nonlocally convex linear metric spaces, Proc. Amer. Math. Soc. 93 (1985), no. 3, 555–560. MR 774022, DOI 10.1090/S0002-9939-1985-0774022-7
- A. N. Dranishnikov, On a problem of P. S. Aleksandrov, Mat. Sb. (N.S.) 135(177) (1988), no. 4, 551–557, 560 (Russian); English transl., Math. USSR-Sb. 63 (1989), no. 2, 539–545. MR 942139, DOI 10.1070/SM1989v063n02ABEH003290 R. D. Edwards, A theorem and a question related to cohomological dimension and cell-like mappings, Notices Amer. Math. Soc. 25 (1978), A259-A260.
- John H. Gresham, A class of infinite-dimensional spaces. II. An extension theorem and the theory of retracts, Fund. Math. 107 (1980), no. 3, 237–245. MR 585553, DOI 10.4064/fm-107-3-237-245
- William E. Haver, Locally contractible spaces that are absolute neighborhood retracts, Proc. Amer. Math. Soc. 40 (1973), 280–284. MR 331311, DOI 10.1090/S0002-9939-1973-0331311-X
- Sze-tsen Hu, Theory of retracts, Wayne State University Press, Detroit, 1965. MR 0181977
- C. Kuratowski, Sur quelques problèmes topologiques concernant le prolongement des fonctions continues, Colloq. Math. 2 (1951), 186–191 (1952) (French). MR 48791, DOI 10.4064/cm-2-3-4-186-191
- Jan van Mill, Another counterexample in ANR theory, Proc. Amer. Math. Soc. 97 (1986), no. 1, 136–138. MR 831402, DOI 10.1090/S0002-9939-1986-0831402-X
- Nguyen To Nhu, Investigating the ANR-property of metric spaces, Fund. Math. 124 (1984), no. 3, 243–254. MR 774515, DOI 10.4064/fm-124-3-243-254
- Nguyen To Nhu and Ta Khac Cu, Probability measure functors preserving the ANR-property of metric spaces, Proc. Amer. Math. Soc. 106 (1989), no. 2, 493–501. MR 964459, DOI 10.1090/S0002-9939-1989-0964459-9
- H. Toruńczyk, A short proof of Hausdorff’s theorem on extending metrics, Fund. Math. 77 (1972), no. 2, 191–193. MR 321026, DOI 10.4064/fm-77-2-191-193
- John J. Walsh, Dimension, cohomological dimension, and cell-like mappings, Shape theory and geometric topology (Dubrovnik, 1981) Lecture Notes in Math., vol. 870, Springer, Berlin-New York, 1981, pp. 105–118. MR 643526
- James E. West, Open problems in infinite-dimensional topology, Open problems in topology, North-Holland, Amsterdam, 1990, pp. 523–597. MR 1078666
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 121 (1994), 259-265
- MSC: Primary 54C20; Secondary 54C55, 54D45, 54H11
- DOI: https://doi.org/10.1090/S0002-9939-1994-1232141-0
- MathSciNet review: 1232141