## The compact neighborhood extension property and local equi-connectedness

HTML articles powered by AMS MathViewer

- by Nguyen To Nhu and Katsuro Sakai
- Proc. Amer. Math. Soc.
**121**(1994), 259-265 - DOI: https://doi.org/10.1090/S0002-9939-1994-1232141-0
- PDF | Request permission

## Abstract:

It is shown that any $\sigma$-compact metrizable space is an AR (ANR) if and only if it is (locally) equi-connected and has the compact (neighborhood) extension property.## References

- Richard F. Arens and James Eells Jr.,
*On embedding uniform and topological spaces*, Pacific J. Math.**6**(1956), 397–403. MR**81458**, DOI 10.2140/pjm.1956.6.397 - Jos van der Bijl and Jan van Mill,
*Linear spaces, absolute retracts, and the compact extension property*, Proc. Amer. Math. Soc.**104**(1988), no. 3, 942–952. MR**964878**, DOI 10.1090/S0002-9939-1988-0964878-X - D. W. Curtis and J. van Mill,
*The compact extension property*, General topology and its relations to modern analysis and algebra, VI (Prague, 1986) Res. Exp. Math., vol. 16, Heldermann, Berlin, 1988, pp. 115–119. MR**952598** - T. Dobrowolski,
*On extending mappings into nonlocally convex linear metric spaces*, Proc. Amer. Math. Soc.**93**(1985), no. 3, 555–560. MR**774022**, DOI 10.1090/S0002-9939-1985-0774022-7 - A. N. Dranishnikov,
*On a problem of P. S. Aleksandrov*, Mat. Sb. (N.S.)**135(177)**(1988), no. 4, 551–557, 560 (Russian); English transl., Math. USSR-Sb.**63**(1989), no. 2, 539–545. MR**942139**, DOI 10.1070/SM1989v063n02ABEH003290
R. D. Edwards, - John H. Gresham,
*A class of infinite-dimensional spaces. II. An extension theorem and the theory of retracts*, Fund. Math.**107**(1980), no. 3, 237–245. MR**585553**, DOI 10.4064/fm-107-3-237-245 - William E. Haver,
*Locally contractible spaces that are absolute neighborhood retracts*, Proc. Amer. Math. Soc.**40**(1973), 280–284. MR**331311**, DOI 10.1090/S0002-9939-1973-0331311-X - Sze-tsen Hu,
*Theory of retracts*, Wayne State University Press, Detroit, 1965. MR**0181977** - C. Kuratowski,
*Sur quelques problèmes topologiques concernant le prolongement des fonctions continues*, Colloq. Math.**2**(1951), 186–191 (1952) (French). MR**48791**, DOI 10.4064/cm-2-3-4-186-191 - Jan van Mill,
*Another counterexample in ANR theory*, Proc. Amer. Math. Soc.**97**(1986), no. 1, 136–138. MR**831402**, DOI 10.1090/S0002-9939-1986-0831402-X - Nguyen To Nhu,
*Investigating the ANR-property of metric spaces*, Fund. Math.**124**(1984), no. 3, 243–254. MR**774515**, DOI 10.4064/fm-124-3-243-254 - Nguyen To Nhu and Ta Khac Cu,
*Probability measure functors preserving the ANR-property of metric spaces*, Proc. Amer. Math. Soc.**106**(1989), no. 2, 493–501. MR**964459**, DOI 10.1090/S0002-9939-1989-0964459-9 - H. Toruńczyk,
*A short proof of Hausdorff’s theorem on extending metrics*, Fund. Math.**77**(1972), no. 2, 191–193. MR**321026**, DOI 10.4064/fm-77-2-191-193 - John J. Walsh,
*Dimension, cohomological dimension, and cell-like mappings*, Shape theory and geometric topology (Dubrovnik, 1981) Lecture Notes in Math., vol. 870, Springer, Berlin-New York, 1981, pp. 105–118. MR**643526** - James E. West,
*Open problems in infinite-dimensional topology*, Open problems in topology, North-Holland, Amsterdam, 1990, pp. 523–597. MR**1078666**

*A theorem and a question related to cohomological dimension and cell-like mappings*, Notices Amer. Math. Soc.

**25**(1978), A259-A260.

## Bibliographic Information

- © Copyright 1994 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**121**(1994), 259-265 - MSC: Primary 54C20; Secondary 54C55, 54D45, 54H11
- DOI: https://doi.org/10.1090/S0002-9939-1994-1232141-0
- MathSciNet review: 1232141