Almost periodic homeomorphisms and $p$-adic transformation groups on compact $3$-manifolds
HTML articles powered by AMS MathViewer
- by Joo S. Lee
- Proc. Amer. Math. Soc. 121 (1994), 267-273
- DOI: https://doi.org/10.1090/S0002-9939-1994-1233977-2
- PDF | Request permission
Abstract:
In this paper we prove that regularly almost periodic is equivalent to nearly periodic for homeomorphisms on compact metric spaces and give an example to show that the above is false without the compactness assumption. We also prove that the following statement is equivalent to the Hilbert-Smith conjecture on compact 3-manifolds ${M^3}$: If h is almost periodic on ${M^3}$, with h = identity on $\partial {M^3}$, then h = identity on ${M^3}$.References
- Beverly L. Brechner, Almost periodic homeomorphisms of $E^{2}$ are periodic, Pacific J. Math. 59 (1975), no. 2, 367–374. MR 388361, DOI 10.2140/pjm.1975.59.367 —, Prime ends and group actions, preprint.
- Glen E. Bredon, Introduction to compact transformation groups, Pure and Applied Mathematics, Vol. 46, Academic Press, New York-London, 1972. MR 0413144
- Andreas Dress, Newman’s theorems on transformation groups, Topology 8 (1969), 203–207. MR 238353, DOI 10.1016/0040-9383(69)90010-X
- N. E. Foland, A characterization of the almost periodic homeomorphisms on the closed $2$-cell, Proc. Amer. Math. Soc. 16 (1965), 1031–1034. MR 180958, DOI 10.1090/S0002-9939-1965-0180958-8
- Walter Helbig Gottschalk and Gustav Arnold Hedlund, Topological dynamics, American Mathematical Society Colloquium Publications, Vol. 36, American Mathematical Society, Providence, R.I., 1955. MR 0074810, DOI 10.1090/coll/036
- W. H. Gottschalk, Minimal sets: an introduction to topological dynamics, Bull. Amer. Math. Soc. 64 (1958), 336–351. MR 100048, DOI 10.1090/S0002-9904-1958-10223-2 H. T. Ku, M. C. Ku, and L. M. Mann, Newman’s theorem and the Hilbert-Smith conjecture, Group Actions on Manifolds, Contemp. Math., vol. 36, Amer. Math. Soc., Providence, RI, 1985, pp. 489-491. L. F. McAuley, A p-adic group cannot act effectively as a transformation group on a n-manifold (Hilbert Fifth Problem), preprint. M. H. A. Newman, A theorem on periodic transformations of spaces, Quart. J. Math 2 (1931), 1-9.
- Frank Raymond, Cohomological and dimension theoretical properties of orbit spaces of $p$-adic actions, Proc. Conf. on Transformation Groups (New Orleans, La., 1967) Springer, New York, 1968, pp. 354–365. MR 0260925
- P. A. Smith, Transformations of finite period. II, Ann. of Math. (2) 40 (1939), 690–711. MR 177, DOI 10.2307/1968950
- P. A. Smith, Transformations of finite period. III. Newman’s theorem, Ann. of Math. (2) 42 (1941), 446–458. MR 4128, DOI 10.2307/1968910
- P. A. Smith, Periodic and nearly periodic transformations, Lectures in Topology, University of Michigan Press, Ann Arbor, Mich., 1941, pp. 159–190. MR 0005302
- E. R. Van Kampen, The Topological Transformations of a Simple Closed Curve Into Itself, Amer. J. Math. 57 (1935), no. 1, 142–152. MR 1507062, DOI 10.2307/2372026
- Chung-Tao Yang, $p$-adic transformation groups, Michigan Math. J. 7 (1960), 201–218. MR 120310
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 121 (1994), 267-273
- MSC: Primary 57M60; Secondary 57S20, 57S25
- DOI: https://doi.org/10.1090/S0002-9939-1994-1233977-2
- MathSciNet review: 1233977