$n\times$ oversampling preserves any tight affine frame for odd $n$
HTML articles powered by AMS MathViewer
- by Charles K. Chui and Xian Liang Shi
- Proc. Amer. Math. Soc. 121 (1994), 511-517
- DOI: https://doi.org/10.1090/S0002-9939-1994-1182699-5
- PDF | Request permission
Abstract:
If $\psi$ generates an affine frame ${\psi _{j,k}}(x) = {2^{j/2}}\psi ({2^j}x - k),j,k \in \mathbb {Z}$, of ${L^2}(\mathbb {R})$, we prove that $\{ {n^{ - 1/2}}{\psi _{j,k/n}}\}$ is also an affine frame of ${L^2}(\mathbb {R})$ with the same frame bounds for any positive odd integer n. This establishes the result stated as the title of this paper. A counterexample of this statement for $n = 2$ is also given.References
- Charles K. Chui, An introduction to wavelets, Wavelet Analysis and its Applications, vol. 1, Academic Press, Inc., Boston, MA, 1992. MR 1150048
- Ingrid Daubechies, The wavelet transform, time-frequency localization and signal analysis, IEEE Trans. Inform. Theory 36 (1990), no. 5, 961–1005. MR 1066587, DOI 10.1109/18.57199
- Ingrid Daubechies, Ten lectures on wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 61, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992. MR 1162107, DOI 10.1137/1.9781611970104
- R. J. Duffin and A. C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc. 72 (1952), 341–366. MR 47179, DOI 10.1090/S0002-9947-1952-0047179-6
- Christopher E. Heil and David F. Walnut, Continuous and discrete wavelet transforms, SIAM Rev. 31 (1989), no. 4, 628–666. MR 1025485, DOI 10.1137/1031129
- Yves Meyer, Ondelettes et opérateurs. I, Actualités Mathématiques. [Current Mathematical Topics], Hermann, Paris, 1990 (French). Ondelettes. [Wavelets]. MR 1085487
- Robert M. Young, An introduction to nonharmonic Fourier series, Pure and Applied Mathematics, vol. 93, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1980. MR 591684
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 121 (1994), 511-517
- MSC: Primary 42C15
- DOI: https://doi.org/10.1090/S0002-9939-1994-1182699-5
- MathSciNet review: 1182699