Semiprimitivity of group algebras of infinite simple groups of Lie type
HTML articles powered by AMS MathViewer
- by D. S. Passman
- Proc. Amer. Math. Soc. 121 (1994), 399-403
- DOI: https://doi.org/10.1090/S0002-9939-1994-1184083-7
- PDF | Request permission
Abstract:
Let G be a simple group of Lie type over an infinite locally finite field F. For any field K, we prove that the group algebra $K[G]$ is semiprimitive. The argument here is a mixture of combinatorial and topological methods. Combined with earlier results, it now follows that any group algebra of an infinite locally finite simple group is semiprimitive. Furthermore, if the group is countably infinite, then the group algebra is primitive. In particular, if G is a simple group of Lie type over the field F, then $K[G]$ is a primitive ring.References
- Roger W. Carter, Simple groups of Lie type, Pure and Applied Mathematics, Vol. 28, John Wiley & Sons, London-New York-Sydney, 1972. MR 0407163
- Joe W. Fisher and Robert L. Snider, Prime von Neumann regular rings and primitive group algebras, Proc. Amer. Math. Soc. 44 (1974), 244–250. MR 342551, DOI 10.1090/S0002-9939-1974-0342551-9
- Daniel Gorenstein, Finite simple groups, University Series in Mathematics, Plenum Publishing Corp., New York, 1982. An introduction to their classification. MR 698782
- B. Hartley and G. Shute, Monomorphisms and direct limits of finite groups of Lie type, Quart. J. Math. Oxford Ser. (2) 35 (1984), no. 137, 49–71. MR 734665, DOI 10.1093/qmath/35.1.49
- D. S. Passman, Semiprimitivity of group algebras of locally finite groups, Infinite groups and group rings (Tuscaloosa, AL, 1992) Ser. Algebra, vol. 1, World Sci. Publ., River Edge, NJ, 1993, pp. 77–101. MR 1377959
- D. S. Passman and A. E. Zalesskiĭ, Semiprimitivity of group algebras of locally finite simple groups, Proc. London Math. Soc. (3) 67 (1993), no. 2, 243–276. MR 1226602, DOI 10.1112/plms/s3-67.2.243
- Robert Steinberg, Lectures on Chevalley groups, Yale University, New Haven, Conn., 1968. Notes prepared by John Faulkner and Robert Wilson. MR 0466335
- Simon Thomas, An identification theorem for the locally finite nontwisted Chevalley groups, Arch. Math. (Basel) 40 (1983), no. 1, 21–31. MR 720890, DOI 10.1007/BF01192748
- B. A. F. Wehrfritz, Infinite linear groups. An account of the group-theoretic properties of infinite groups of matrices, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 76, Springer-Verlag, New York-Heidelberg, 1973. MR 0335656 A. E. Zalesskii, Semisimplicity of the group rings of classical locally finite simple groups, private communication, 1992.
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 121 (1994), 399-403
- MSC: Primary 16S34; Secondary 20C33
- DOI: https://doi.org/10.1090/S0002-9939-1994-1184083-7
- MathSciNet review: 1184083