A NON-ITERATIVE 2-ADIC STATEMENT
OF THE $3N + 1$ CONJECTURE

DANIEL J. BERNSTEIN

(Communicated by William Adams)

Abstract. Associated with the $3N + 1$ problem is a permutation Φ of the
2-adic integers. The $3N + 1$ conjecture is equivalent to the conjecture that $3Q$
is an integer if $\Phi(Q)$ is a positive integer. We state a new definition of Φ. To
wit: Q and $N = \Phi(Q)$ are linked by the equations $Q = 2d_0 + 2d_1 + \cdots$
and $N = (\frac{1}{3})2d_0 + (-\frac{1}{3})2d_1 + (\frac{1}{27})2d_2 + \cdots$ with $0 \leq d_0 < d_1 < \cdots$. We
list four applications of this definition.

Definition and conjecture

We recall that the 2-adic integers \mathbb{Z}_2 may be defined as binary expansions
which are allowed to extend infinitely far to the left [3, Exercise 4.1-31]: for
instance, $1/3 = (\ldots 0101011)_2 \in \mathbb{Z}_2$. Fix odd 2-adic integers $u_0, u_1, \ldots \in
1 + 2\mathbb{Z}_2$. For any increasing, finite or infinite, sequence $0 \leq d_0 < d_1 < \cdots$
of nonnegative integers, the sum $\sum u_i 2^{d_i}$ converges to some 2-adic integer S. In
fact this map from increasing sequences to sums is one-to-one and onto all of
\mathbb{Z}_2. We construct its inverse. Given $S \in \mathbb{Z}_2$ we set d_0 to the first bit position
in S, d_1 to the first bit position in $S - u_0 2^{d_0}$, and so on. If at any point
$S - u_0 2^{d_0} - \cdots - u_n 2^{d_n}$ is zero, we stop, and the sequence is finite.

As an example, the expansion

\begin{equation}
Q = 2^{d_0} + 2^{d_1} + \cdots
\end{equation}

is a bijection between $Q \in \mathbb{Z}_2$ and increasing sequences $d = (d_0, d_1, \ldots)$. Finite sequences d correspond to nonnegative integers Q. (In particular the
empty sequence corresponds to $Q = 0$.) Similarly, the expansion

\begin{equation}
N = \frac{-1}{3} 2^{d_0} + \frac{-1}{9} 2^{d_1} + \frac{-1}{27} 2^{d_2} + \cdots
\end{equation}

is another bijection. Together (1) and (2) determine a bijection between all
$N \in \mathbb{Z}_2$ and all $Q \in \mathbb{Z}_2$. We write $N = \Phi(Q)$. For instance,

$$\Phi(-\frac{1}{3}) = \Phi(2^0 + 2^2 + 2^4 + \cdots) = \frac{-1}{3} 2^0 + \frac{-1}{9} 2^2 + \frac{-1}{27} 2^4 + \cdots = 1$$

by elementary geometric series manipulations. So $1 \in \Phi((1/3)\mathbb{Z})$.

Conjecture. The set \mathbb{Z}^+ of positive integers is contained in $\Phi((1/3)\mathbb{Z})$.

Connection with the $3N+1$ problem

We define two functions $H(Q)$ and $C(N)$. If Q is even we set $H(Q) = Q/2$; otherwise we set $H(Q) = Q - 1$. If N is even we set $C(N) = N/2$; otherwise we set $C(N) = 3N + 1$.

Theorem 1. $C(\Phi(Q)) = \Phi(H(Q))$.

Proof. We define d as in (1). If Q is even then $d_0 > 0$ (or d has length 0) and

$$C(\Phi(Q)) = \frac{-1}{3} 2^{d_{0-1}} + \frac{-1}{9} 2^{d_{1-1}} + \cdots = \Phi(2^{d_{0-1}} + 2^{d_{1-1}} + \cdots) = \Phi(Q/2).$$

If Q is odd then $d_0 = 0$ and

$$C(\Phi(Q)) = 1 + 3\left(\frac{-1}{3} 2^{d_{1}} + \frac{-1}{9} 2^{d_{2}} + \cdots\right) = \frac{-1}{3} 2^{d_{1}} + \frac{-1}{9} 2^{d_{2}} + \cdots = \Phi(2^{d_{1}} + 2^{d_{2}} + \cdots) = \Phi(Q - 2^{d_{0}}) = \Phi(Q - 1)$$

as desired. \(\square\)

The $3N+1$ conjecture [4] states that, for any positive integer $N \in \mathbb{Z}^+$, some iterate $C^k(N)$ equals 1. This implies our conjecture:

Theorem 2. If $C^k(N) = 1$ then $N \in \Phi((1/3)\mathbb{Z})$.

Proof. Set $Q = \Phi^{-1}(N)$. Now $C^k(\Phi(Q)) = 1$ so $\Phi(H^k(Q)) = 1$ so $H^k(Q) = \Phi^{-1}(1) = -1/3 \in (1/3)\mathbb{Z}$. If $H(x) \in (1/3)\mathbb{Z}$ then $x \in (1/3)\mathbb{Z}$, so by induction $Q \in (1/3)\mathbb{Z}$ as desired. \(\square\)

The converse is also true: our conjecture implies the $3N+1$ conjecture.

Theorem 3. If $N \in \mathbb{Z}^+$ and $N \in \Phi((1/3)\mathbb{Z})$ then $C^k(N) = 1$ for some k.

Proof. Again set $Q = \Phi^{-1}(N)$ and define d by (1) and (2). We have $3Q \in \mathbb{Z}$. Notice first that Q cannot be an integer. For if $Q \in \mathbb{Z}$ then either $Q = 0$, in which case $N = 0$; or Q is positive, in which case d is finite and N is a negative rational number by (2); or Q is negative, in which case $d_{i+1} = d_i + 1$ for all large i and (2) again converges to a negative rational number.

So Q is $1/3$ away from an integer. Thus the d_i's eventually fall into the pattern $d_{i+1} = d_i + 2$, say for $i \geq m$. Define a map c on d corresponding to the action of C on N. Notice that c acts on d by subtracting 1 from each element, if $d_0 > 0$; or by shifting d to the left, if $d_0 = 0$. So

$$c^{d_m+m}(d_0, \ldots, d_{m-1}, d_m, d_{m+2}, d_{m+4}, \ldots) = (0, 2, 4, \ldots),$$

and $C^{d_m+m}(N) = 1$. \(\square\)
Hence our conjecture about the 2-adic expansions (1) and (2) is equivalent to the $3N + 1$ conjecture. Does this throw any light on the latter? Our map Φ is exactly the inverse of Q_∞ in [4]. (This can alternatively be derived from [5, Lemma 4].) Our Theorem 1, that Φ conjugates H to C, is equivalent to [1, Theorem 1]. What is new here is the expansion (2). It gives an explicit formula for $\Phi = Q_\infty^1$. We have therefore answered affirmatively the final question in [4].

Applications

Our result has several immediate applications. First, say $Q \in \mathbb{Q} \cap \mathbb{Z}_2$ is rational. Then either d is finite (say of length μ) or $d_{m+\lambda} = d_m + X$ for all sufficiently large m (say $m \geq \mu$) and some fixed λ and X. In the first case $3^\mu N$ is an integer. In the second case

$$-3^\mu(3^\lambda - 2^X)N = (3^\lambda - 2^X)(3^{\mu - 1}2^{d_0} + \ldots + 3^02^{d_{\mu - 1}}) + (3^{\lambda - 1}2^{d_0} + \ldots + 3^02^{d_{\mu + 1}})$$

by (2). So in either case N is rational.

Corollary 1. $\Phi(\mathbb{Q} \cap \mathbb{Z}_2) \subseteq \mathbb{Q} \cap \mathbb{Z}_2$.

The “Periodicity Conjecture” from [4] states that $\Phi(\mathbb{Q} \cap \mathbb{Z}_2) = \mathbb{Q} \cap \mathbb{Z}_2$. We have shown half of this.

Second, in our development of Φ we noted that Φ is a bijection from \mathbb{Z}_2 onto itself, i.e., a permutation of \mathbb{Z}_2. In fact we see from (1) and (2) that Φ is a homeomorphism under the topology induced by the usual 2-adic metric (see [4, §2.8]). So [4, Theorem L] follows immediately.

Third, from (1) and (2) we see that the function $Q_k(N) = \Phi^{-1}(N) \mod 2^k$ depends only on the equivalence class $N \mod 2^k$. This is the first half of [4, Theorem B]. The induced function \overline{Q}_k on equivalence classes is a permutation because Φ is. By induction the cycles of \overline{Q}_k are of length dividing 2^k. Indeed, any cycle of \overline{Q}_k of length r gives rise to either one cycle of \overline{Q}_{k+1} of length $2r$ or two cycles of \overline{Q}_{k+1} of length r. This is the second half of [4, Theorem B].

Finally, we give a short proof of the following theorem of Müller [5].

Corollary 2. Φ is nowhere differentiable.

Proof. If d is infinite then for any $k \geq 0$

$$\Phi(Q) - \Phi(Q - 2^{d_k}) \equiv (-1)^k \mod 4$$

by routine computation from (2). So as $k \to \infty$ the difference ratio does not converge. If d is finite, say of length m, then for $e + f > e > d_{m-1}$

$$\Phi(Q) - \Phi(Q + 2^e + 2^{e+f}) \equiv \frac{1}{3^m+2^f} \mod 3$$

again by routine computation; and the latter quantity is different mod 8 for $f = 1, 2$. So as $e \to \infty$ the difference ratio does not converge. Hence both Φ and its inverse are nowhere differentiable. □
Note that our approach generalizes to the "$AN + B$ problem" [2, 6]. In this generalization A and B are odd, and $N = \Phi_{A,B}(Q) = \sum(-B/A^i+1)2^d_i$. This homeomorphism $\Phi_{A,B}$ conjugates H to $CA_{A,B}$, where $CA_{A,B}(N)$ equals $N/2$ for N even and $AN + B$ for N odd.

ACKNOWLEDGMENT

The author would like to thank Jeffrey C. Lagarias and an anonymous referee for their helpful suggestions.

REFERENCES

1. Ethan Akin, 3\times + 1 , unpublished manuscript.

5 Brewster Lane, Bellport, New York 11713
E-mail address: djb@silverton.berkeley.edu