Incompatibility of compact perturbations with the Sz. Nagy–Foias functional calculus
HTML articles powered by AMS MathViewer
- by Kenneth R. Davidson and Fouad Zarouf
- Proc. Amer. Math. Soc. 121 (1994), 519-522
- DOI: https://doi.org/10.1090/S0002-9939-1994-1195716-3
- PDF | Request permission
Abstract:
For every absolutely continuous contraction T with spectrum on the unit circle, we exhibit an ${H^\infty }$ function h and a sequence of operators ${T_n}$ which are unitarily equivalent to T and differ from T by a sequence of compact operators converging to 0 in norm such that $h({T_n})$ is never a compact perturbation of $h(T)$. When T is diagonal, it can also be arranged that $T - {T_n}$ is trace class, and ${T_n}$ commutes with T. Pour toute contraction absolument continue T dont le spectre rencontre le cercle unité, il existe une fonction h de ${H^\infty }$ et une suite ${T_n}$ d’opérateurs unitairement equivalents à T telle que $T - {T_n}$ soit compact et convergent en norme vers 0, mais $h({T_n}) - h(T)$ soit non compact pour tout n. Dans le cas où T est diagonal, la suite ${T_n}$ vérifie en plus $T - {T_n}$ est un opérateur à trace, et ${T_n}$ commute avec T.References
- C. Foiaş, C. M. Pearcy, and B. Sz.-Nagy, Contractions with spectral radius one and invariant subspaces, Acta Sci. Math. (Szeged) 43 (1981), no. 3-4, 273–280. MR 640304
- J. Esterle and F. Zarouf, Sur la non compatibilité de l’équivalence de Calkin avec le calcul fonctionnel de Nagy-Foiaş, Canad. Math. Bull. 33 (1990), no. 3, 261–263 (French). MR 1077093, DOI 10.4153/CMB-1990-042-0
- J. Esterle and F. Zarouf, Compatibility and incompatibility of Calkin equivalence with the Nagy-Foias calculus, Acta Sci. Math. (Szeged) 56 (1992), no. 3-4, 359–363 (1993). MR 1222079
- Béla Sz.-Nagy and Ciprian Foiaş, Harmonic analysis of operators on Hilbert space, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York; Akadémiai Kiadó, Budapest, 1970. Translated from the French and revised. MR 0275190
- Dan Voiculescu, A non-commutative Weyl-von Neumann theorem, Rev. Roumaine Math. Pures Appl. 21 (1976), no. 1, 97–113. MR 415338
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 121 (1994), 519-522
- MSC: Primary 47A60; Secondary 47D25
- DOI: https://doi.org/10.1090/S0002-9939-1994-1195716-3
- MathSciNet review: 1195716