Minimal surfaces with the Ricci condition in $4$-dimensional space forms
HTML articles powered by AMS MathViewer
- by Makoto Sakaki
- Proc. Amer. Math. Soc. 121 (1994), 573-577
- DOI: https://doi.org/10.1090/S0002-9939-1994-1195731-X
- PDF | Request permission
Abstract:
Let ${X^N}(c)$ denote the N-dimensional simply connected space form of constant curvature c. We consider a problem to classify those minimal surfaces in ${X^N}(c)$ which are locally isometric to minimal surfaces in ${X^3}(c)$. In this paper we solve this problem in the case where $N = 4$, and give a result also in higher codimensional cases.References
- Antonio Carlos Asperti, Minimal surfaces with constant normal curvature, J. Math. Soc. Japan 36 (1984), no.Β 3, 375β386. MR 746701, DOI 10.2969/jmsj/03630375
- Robert L. Bryant, Minimal surfaces of constant curvature in $S^n$, Trans. Amer. Math. Soc. 290 (1985), no.Β 1, 259β271. MR 787964, DOI 10.1090/S0002-9947-1985-0787964-8
- Luthur Pfahler Eisenhart, An Introduction to Differential Geometry, Princeton Mathematical Series, vol. 3, Princeton University Press, Princeton, N. J., 1940. MR 0003048
- Renato de Azevedo Tribuzy and Irwen VΓ‘lle Guadalupe, Minimal immersions of surfaces into $4$-dimensional space forms, Rend. Sem. Mat. Univ. Padova 73 (1985), 1β13. MR 799891
- Takehiro Itoh, Minimal surfaces in a Riemannian manifold of constant curvature, K\B{o}dai Math. Sem. Rep. 25 (1973), 202β214. MR 317240
- Gene Douglas Johnson, An intrinsic characterization of a class of minimal surfaces in constant curvature manifolds, Pacific J. Math. 149 (1991), no.Β 1, 113β125. MR 1099786
- Katsuei Kenmotsu, On compact minimal surfaces with non-negative Gaussian curvature in a space of constant curvature. I, Tohoku Math. J. (2) 25 (1973), 469β479. MR 365428, DOI 10.2748/tmj/1178241280
- Katsuei Kenmotsu, On minimal immersions of $R^{2}$ into $S^{N}$, J. Math. Soc. Japan 28 (1976), no.Β 1, 182β191. MR 405218, DOI 10.2969/jmsj/02810182
- Katsuei Kenmotsu, Minimal surfaces with constant curvature in $4$-dimensional space forms, Proc. Amer. Math. Soc. 89 (1983), no.Β 1, 133β138. MR 706526, DOI 10.1090/S0002-9939-1983-0706526-5
- H. Blaine Lawson Jr., Complete minimal surfaces in $S^{3}$, Ann. of Math. (2) 92 (1970), 335β374. MR 270280, DOI 10.2307/1970625
- H. Blaine Lawson Jr., Some intrinsic characterizations of minimal surfaces, J. Analyse Math. 24 (1971), 151β161. MR 284922, DOI 10.1007/BF02790373 β, Lectures on minimal submanifolds, Publish or Perish, Berkeley, 1980.
- Reiko Naka, Some results on minimal surfaces with the Ricci condition, Minimal submanifolds and geodesics (Proc. Japan-United States Sem., Tokyo, 1977) North-Holland, Amsterdam-New York, 1979, pp.Β 121β142. MR 574261
- Makoto Sakaki, Exceptional minimal surfaces with the Ricci condition, Tsukuba J. Math. 16 (1992), no.Β 1, 161β167. MR 1178671, DOI 10.21099/tkbjm/1496161836
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 121 (1994), 573-577
- MSC: Primary 53C42
- DOI: https://doi.org/10.1090/S0002-9939-1994-1195731-X
- MathSciNet review: 1195731