ON THE SIZE OF FINITE SIDON SEQUENCES

SHENG CHEN

(Communicated by William W. Adams)

Abstract. Let \(h \geq 2 \) be an integer. A set of positive integers \(B \) is called a \(B_h \)-sequence, or a Sidon sequence of order \(h \), if all sums \(a_1 + a_2 + \cdots + a_h \), where \(a_i \in B \) \((i = 1, 2, \ldots, h) \), are distinct up to rearrangements of the summands. Let \(F_h(n) \) be the size of the maximum \(B_h \)-sequence contained in \(\{1, 2, \ldots, n\} \). We prove that

\[
F_{2r-1}(n) < ((r!)^2 n^{1/(2r-1)}) + O(n^{1/(4r-2)}).
\]

Let \(h \geq 2 \) be an integer. A set of positive integers \(B \) is called a \(B_h \)-sequence if all sums \(a_1 + a_2 + \cdots + a_h \), where \(a_i \in B \) \((i = 1, 2, \ldots, h) \), are distinct up to rearrangements of the summands.

A \(B_h \)-sequence is also called a Sidon sequence of order \(h \) [6]. We say that \(B \) is a \(B_h \)-sequence for \(\mathbb{Z}/(n) \) if \(B \) is a finite \(B_h \)-sequence and all sums are distinct modulo \(n \).

Let \(F_h(n) \) denote the size of maximum \(B_h \)-sequences contained in the set of integers \(\{1, 2, \ldots, n\} \) and \(f_h(n) \) the size of maximum \(B_h \)-sequence for \(\mathbb{Z}/(n) \). Then it follows from a simple combinatorial argument that

\[
F_h(n) \leq (h \cdot h!)^{1/h} n^{1/h} \quad \text{and} \quad f_h(n) \leq (h!)^{1/h} n^{1/h}.
\]

Erdős and Turan [2] proved that \(F_2(n) < \sqrt{n} + O(n^{1/4}) \). On the other hand, Bose and Chowla [1] showed that, for every \(h \geq 2 \), there exists a \(B_h \)-sequence \(B \) for \(\mathbb{Z}/(m^h - 1) \) with \(|B| = m \), where \(m \) is a prime power. This implies that

\[
F_h(n) \geq (1 + o(1)) n^{1/h}.
\]

Therefore, \(F_2(n) = (1 + o(1)) \sqrt{n} \).

Erdős conjectured that \(F_2(n) = \sqrt{n} + O(1) \). For \(h = 3 \), Lee [4] obtained that

\[
F_3(n) \leq \left(\left(1 - \frac{1}{6 \log_2 n} \right) 4n \right)^{1/3}.
\]

For \(h = 4 \), Lindström [5] proved that

\[
F_4(n) \leq (8n)^{1/4} + O(n^{1/8}).
\]

Received by the editors May 22, 1992 and, in revised form, September 11, 1992.

1991 Mathematics Subject Classification. Primary 11B83; Secondary 11B50, 05B10.

Key words and phrases. Additive number theory, difference sets, \(B_h \)-sequence, Sidon sequences.

©1994 American Mathematical Society

0002-9939/94 $1.00 + $.25 per page
When \(h = 2r \) \((r \geq 1)\), Jia [3] showed that
\[
F_{2r}(n) \leq ((r!)^2rn)^{1/2r} + O(n^{1/4r})
\]
and
\[
f_{2r}(n) \leq ((r!)^2n)^{1/2r} + O(n^{1/4r}).
\]

In this paper, we shall obtain a similar upper bound for \(F_{2r-1}(n) \) and \(f_h(n) \) as well.

Theorem 1. For all \(r \geq 1 \),
\[
F_{2r-1}(n) \leq ((r!)^2n)^{1/(2r-1)} + O(n^{1/(4r-2)}).
\]

Theorem 2. For all \(r \geq 1 \),
\[
f_{2r}(n) \leq ((r!)^2n)^{1/2r} + O(1)
\]
and
\[
f_{2r-1}(n) \leq (r!(r-1)n)^{1/(2r-1)} + O(1).
\]

First, some notation. Let \(B \) be a \(B_{2r-1} \)-sequence. Let \(A = rB \) where \(rB \)
denotes the set of all sums of \(r \) not necessarily distinct elements in \(B \). We have
\[
t = |A| = \binom{k + r - 1}{r} \geq \frac{k^r}{r!}.
\]

Let
\[
V = \{(a, b) \mid a, b \in rB \} = V_0 \cup V_1,
\]
where \(V_1 = V \setminus V_0 \) and \(V_0 \) consists of all elements \((a, b)\) such that \(a = \sum_{i=1}^{r} a_i \) and \(b = \sum_{j=1}^{r'} b_j \) with \(a_i, b_j \in B \) and \(a_i \neq b_j \) for all \(1 \leq i, j \leq r \).

Lemma. For any integer \(d \), there are at most \(k/r \) elements \((a, b)\) in \(V_0 \) such that \(a - b = d \).

Proof. Let \((a_i, b_i)\) be elements in \(V_0 \), \(i = 1, 2, \ldots, s \), such that \(a_i - b_i = d \) for all \(1 \leq i \leq s \). Suffice to show that, if \(s > k/r \), at least two of the \((a_i, b_i)\)'s
are the same.

Now assume \(s > k/r \). Write \(a_i = \sum_{j=1}^{r} a_{ij} \) and \(b_i = \sum_{j=1}^{r'} b_{ij} \) where \(a_{ij}, b_{ij} \in B \). Since \(|B| = k \) and \(sr > k \), there are at least two distinct pairs \((i, j)\) and \((i', j')\) \((1 \leq i, i' \leq s \) and \(1 \leq j, j' \leq r \) \) such that \(a_{ij} = a_{i'j'} \). By the definition of \(V_0 \), \(i \neq i' \). But then we have \(a_i - a_{ij} - b_i = a_{i'} - a_{i'j'} - b_{i'} \). Hence \(a_i - a_{ij} + b_{ij} = a_{i'} - a_{i'j'} + b_{i'} \). As \(B \) is a \(B_{2r-1} \)-sequence and \(a_{ij} \)'s and \(b_{ij} \)'s are all mutually distinct, we have \(\{a_{i1}, a_{i2}, \ldots, a_{ir} \} = \{a_{i'1}, a_{i'2}, \ldots, a_{i'r} \} \) and \(\{b_{i1}, b_{i2}, \ldots, b_{ir} \} = \{b_{i'1}, b_{i'2}, \ldots, b_{i'r} \} \). Therefore, \((a_i, b_i) = (a_{i'}, b_{i'}) \). This completes the proof of the Lemma.

Proof of Theorem 1. Let \(u = \lfloor n^{(4r-3)/(4r-2)} \rfloor \) and \(I_m = [-u + m, -1 + m] \), \(m = 1, 2, \ldots, rn + u \), \(C_m = I_m \cap B \), and \(c_m = |C_m| \). Then
\[
(tu)^2 = \left(\sum_{m=1}^{rn+u} c_m \right)^2 \leq (rn + u) \sum_{m=1}^{rn+u} c_m^2.
\]
Note c_m^2 is the number of elements $(a, b) \in V$ such that $a, b \in C_m$. Hence $-u < a - b < u$.

For any integer d, $-u < d < u$, by the Lemma, there are at most k/r elements $(a, b) \in V_0$ such that $a - b = d$. And each such pair is counted $u - |d|$ times toward the sum $\sum_{m=1}^{u+u} c_m^2$. Hence, as $|V_1| \leq O(k^{2r-1})$ and $k \leq O(n^{1/(2r-1)})$, $$(tu)^2 \leq (rn + u) \left(\sum_{-u < d < u} \frac{k}{r}(u - |d|) + O(k^{2r-1}) \right)$$ $$= (rn + u) \left(\frac{k}{r}u^2 + O(k^{2r-1}) \right).$$

So, $$t^2 \leq nk(1 + O(n^{-1/(4r-2)})).$$

Hence, $$k \leq ((r!)^2 n(1 + O(n^{-1/(4r-2)})))^{1/((2r-1))} \leq ((r!)^2 n)^{1/((2r-1))} + O(n^{1/(4r-2)}).$$

This proves Theorem 1. \square

Proof of Theorem 2. In the case $h = 2r - 1$, we use the same settings A and V. Since, for any $a \in \mathbb{Z}/(n)$, there exist at most k/r elements $(a, b) \in V_0$ such that $a - b = d$, we have $$t^2 = |V| = |V_0| + |V_1| \leq \frac{k}{r}n + O(k^{2r-1}).$$

Hence, $$\frac{k^{2r}}{(r!)^2} \leq \frac{k}{r}n + O(k^{2r-1}) = \frac{k}{r}n(1 + O(n^{-1/(2r-1)})),$$

and $$k \leq (r!(r-1)!n)^{1/((2r-1))}(1 + O(n^{-1/(2r-1)}))^{1/((2r-1))}$$ $$= (r!(r-1)!n)^{1/((2r-1))} + O(1).$$

This shows that $f_{2r-1}(n) \leq (r!(r-1)!n)^{1/((2r-1))} + O(1)$. Similarly, we have $f_{2r}(n) \leq (r!)^2 n^{1/(2r)} + O(1)$, which completes the proof of Theorem 2. \square

Acknowledgment

The author would like to thank W. Gu and X.-D. Jia for their valuable and intriguing discussion.

References

Department of Mathematics, Southwest Texas State University, San Marcos, Texas 78666

E-mail address: sc03@swtexas.bitnet