ON THE SIZE OF FINITE SIDON SEQUENCES

SHENG CHEN

(Communicated by William W. Adams)

Abstract. Let $h \geq 2$ be an integer. A set of positive integers B is called a B_h-sequence, or a Sidon sequence of order h, if all sums $a_1 + a_2 + \cdots + a_h$, where $a_i \in B \ (i = 1, 2, \ldots, h)$, are distinct up to rearrangements of the summands. Let $F_h(n)$ be the size of the maximum B_h-sequence contained in \{1, 2, \ldots, n\}. We prove that

$$F_{2(r-1)}(n) \leq ((r!)^2 n)^{1/(2r-1)} + O(n^{1/(4r-2)}).$$

Let $h \geq 2$ be an integer. A set of positive integers B is called a B_h-sequence if all sums $a_1 + a_2 + \cdots + a_h$, where $a_i \in B \ (i = 1, 2, \ldots, h)$, are distinct up to rearrangements of the summands.

A B_h-sequence is also called a Sidon sequence of order h [6]. We say that B is a B_h-sequence for $\mathbb{Z}/(n)$ if B is a finite B_h-sequence and all sums are distinct modulo n.

Let $F_h(n)$ denote the size of maximum B_h-sequences contained in the set of integers \{1, 2, \ldots, n\} and $f_h(n)$ the size of maximum B_h-sequence for $\mathbb{Z}/(n)$. Then it follows from a simple combinatorial argument that

$$F_h(n) \leq (h \cdot h!)^{1/h} n^{1/h} \quad \text{and} \quad f_h(n) \leq (h!)^{1/h} n^{1/h}.$$

Erdős and Turan [2] proved that $F_2(n) < \sqrt{n} + O(n^{1/4})$. On the other hand, Bose and Chowla [1] showed that, for every $h \geq 2$, there exists a B_h-sequence B for $\mathbb{Z}/(m^h - 1)$ with $|B| = m$, where m is a prime power. This implies that

$$F_h(n) \geq (1 + o(1)) n^{1/h}.$$

Therefore, $F_2(n) = (1 + o(1)) \sqrt{n}$.

Erdős conjectured that $F_2(n) = \sqrt{n} + O(1)$. For $h = 3$, Lee [4] obtained that

$$F_3(n) \leq \left(1 - \frac{1}{6 \log_2 n} \right) 4n^{1/3}.$$

For $h = 4$, Lindström [5] proved that

$$F_4(n) \leq (8n)^{1/4} + O(n^{1/8}).$$
When \(h = 2r \) \((r \geq 1)\), Jia [3] showed that
\[
F_{2r}(n) \leq (\ell!)^2 r^n \frac{1}{2r} + O(n^{1/4r})
\]
and
\[
f_{2r}(n) \leq (\ell!)^2 n^{1/2r} + O(n^{1/4r}).
\]

In this paper, we shall obtain a similar upper bound for \(F_{2r-1}(n) \) and \(f_h(n) \) as well.

Theorem 1. For all \(r \geq 1 \),
\[
F_{2r-1}(n) \leq (\ell!)^2 n^{1/(2r-1)} + O(n^{1/(4r-2)}).
\]

Theorem 2. For all \(r \geq 1 \),
\[
f_{2r}(n) \leq (\ell!)^2 n^{1/2r} + O(1)
\]
and
\[
f_{2r-1}(n) \leq (\ell!(r-1)n^{1/(2r-1)} + O(1).
\]

First, some notation. Let \(B \) be a \(P_{2r-1} \)-sequence. Let \(A = rB \) where \(rB \) denotes the set of all sums of \(r \) not necessarily distinct elements in \(B \). We have
\[
t = |A| = \binom{k + r - 1}{r} \geq \frac{k^r}{r!}.
\]

Let
\[
V = \{ (a, b) | a, b \in rB \} = V_0 \cup V_1,
\]
where \(V_1 = V \setminus V_0 \) and \(V_0 \) consists of all elements \((a, b) \) such that \(a = \sum_{i=1}^r a_i \) and \(b = \sum_{j=1}^r b_j \) with \(a_i, b_j \in B \) and \(a_i \neq b_j \) for all \(1 \leq i, j \leq r \).

Lemma. For any integer \(d \), there are at most \(k/r \) elements \((a, b) \) in \(V_0 \) such that \(a - b = d \).

Proof. Let \((a_i, b_i) \) be elements in \(V_0 \), \(i = 1, 2, \ldots, s \), such that \(a_i - b_i = d \) for all \(1 \leq i \leq s \). Suffice to show that, if \(s > k/r \), at least two of the \((a_i, b_i) \)'s are the same.

Now assume \(s > k/r \). Write \(a_i = \sum_{j=1}^r a_{ij} \) and \(b_i = \sum_{j=1}^r b_{ij} \) where \(a_{ij}, b_{ij} \in B \). Since \(|B| = k \) and \(sr > k \), there are at least two distinct pairs \((i, j)\) and \((i', j')\) \((1 \leq i, i' \leq s \text{ and } 1 \leq j, j' \leq r)\) such that \(a_{ij} = a_{i'j'} \).

By the definition of \(V_0 \), \(i \neq i' \). But then we have \(a_i - a_{ij} - b_i = a_{i'} - a_{i'j'} - b_{i'} \). Hence \(a_i - a_{ij} + b_{i'} = a_{i'} - a_{i'j'} + b_i \). As \(B \) is a \(P_{2r-1} \)-sequence and \(a_{ij} \)'s and \(b_{ij} \)'s are all mutually distinct, we have \{\(a_{i_1}, a_{i_2}, \ldots, a_{i_r} \}\) and \{\(b_{i_1}, b_{i_2}, \ldots, b_{i_r} \)\} \(=\) \{\(a_{i'1}, a_{i'2}, \ldots, a_{i'r} \)\} and \{\(b_{i'1}, b_{i'2}, \ldots, b_{i'r} \)\}. Therefore, \((a_i, b_i) = (a_{i'}, b_{i'}) \). This completes the proof of the Lemma.

Proof of Theorem 1. Let \(u = \lfloor n^{(4r-3)/(4r-2)} \rfloor \) and \(I_m = [-u + m, -1 + m] \), \(m = 1, 2, \ldots, rn + u \), \(C_m = I_m \cap B \), and \(c_m = |C_m| \). Then
\[
(1) \quad (tu)^2 = \left(\sum_{m=1}^{rn+u} c_m \right)^2 \leq (rn + u) \sum_{m=1}^{rn+u} c_m^2.
\]
Note \(c_m^2 \) is the number of elements \((a, b) \in V\) such that \(a, b \in C_m \). Hence \(-u < a - b < u\).

For any integer \(d \), \(-u < d < u\), by the Lemma, there are at most \(k/r \) elements \((a, b) \in V_0\) such that \(a - b = d \). And each such pair is counted \(u - |d| \) times toward the sum \(\sum_{m=1}^{r^r+u} c_m^2 \). Hence, as \(|V| \leq O(k^{2r-1}) \) and \(k \leq O(n^{1/(2r-1)}) \),

\[
(tu)^2 \leq (rn + u) \left(\sum_{-u < d < u} \frac{k}{r} (u - |d|) + O(k^{2r-1}) \right)
= (rn + u) \left(\frac{k}{r} u^2 + O(k^{2r-1}) \right).
\]

So,

\[
t^2 \leq nk(1 + O(n^{-1/(4r-2)})).
\]

Hence,

\[
k \leq (\frac{r!}{2})^2 n(1 + O(n^{-1/(4r-2)}))^{1/(2r-1)} \leq (\frac{r!}{2})^2 n^{1/(2r-1)} + O(n^{1/(4r-2)}).
\]

This proves Theorem 1. \(\Box \)

Proof of Theorem 2. In the case \(h = 2r - 1\), we use the same settings \(A \) and \(V \). Since, for any \(d \in Z/(n)\), there exist at most \(k/r \) elements \((a, b) \in V_0\) such that \(a - b = d \), we have

\[
t^2 = |V| = |V_0| + |V_1| \leq \frac{k}{r} n + O(k^{2r-1}).
\]

Hence,

\[
\frac{k^{2r}}{(r!)^2} \leq \frac{k}{r} n + O(k^{2r-1}) = \frac{k}{r} n(1 + O(n^{-1/(2r-1)})),
\]

and

\[
k \leq (r!(r-1)!n)^{1/(2r-1)}(1 + O(n^{-1/(2r-1)}))^{1/(2r-1)}
= (r!(r-1)!n)^{1/(2r-1)} + O(1).
\]

This shows that \(f_{2r-1}(n) \leq (r!(r-1)!n)^{1/(2r-1)} + O(1) \). Similarly, we have \(f_{2r}(n) \leq ((r!)^2 n)^{1/(2r)} + O(1) \), which completes the proof of Theorem 2. \(\Box \)

Acknowledgment

The author would like to thank W. Gu and X.-D. Jia for their valuable and intriguing discussion.

References

DEPARTMENT OF MATHEMATICS, SOUTHWEST TEXAS STATE UNIVERSITY, SAN MARCOS, TEXAS 78666

E-mail address: sc03@swtexas.bitnet