On the size of finite Sidon sequences
HTML articles powered by AMS MathViewer
- by Sheng Chen
- Proc. Amer. Math. Soc. 121 (1994), 353-356
- DOI: https://doi.org/10.1090/S0002-9939-1994-1196162-9
- PDF | Request permission
Abstract:
Let $h \geq 2$ be an integer. A set of positive integers B is called a ${B_h}$-sequence, or a Sidon sequence of order h, if all sums ${a_1} + {a_2} + \cdots + {a_h}$, where ${a_i} \in B (i = 1,2, \ldots ,h)$, are distinct up to rearrangements of the summands. Let ${F_h}(n)$ be the size of the maximum ${B_h}$-sequence contained in $\{ 1,2, \ldots ,n\}$. We prove that \[ {F_{2r - 1}}(n) \leq {({(r!)^2}n)^{1/(2r - 1)}} + O({n^{1/(4r - 2)}}).\]References
- R. C. Bose and S. Chowla, Theorems in the additive theory of numbers, Comment. Math. Helv. 37 (1962/63), 141–147. MR 144877, DOI 10.1007/BF02566968 P. Erdős and P. Turan, On a problem in additive number theory and some related problems, J. Number Theory 38 (1941), 191-205.
- Xing De Jia, On finite Sidon sequences, J. Number Theory 44 (1993), no. 1, 84–92. MR 1219489, DOI 10.1006/jnth.1993.1037 M. A. Lee, On ${B_3}$ sequences, Acta Math. Sinica 34 (1991), 67-71.
- Bernt Lindström, A remark on $B_{4}$-sequences, J. Combinatorial Theory 7 (1969), 276–277. MR 249389
- S. Sidon, Ein Satz über trigonometrische Polynome und seine Anwendung in der Theorie der Fourier-Reihen, Math. Ann. 106 (1932), no. 1, 536–539 (German). MR 1512772, DOI 10.1007/BF01455900
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 121 (1994), 353-356
- MSC: Primary 11B83; Secondary 11B50
- DOI: https://doi.org/10.1090/S0002-9939-1994-1196162-9
- MathSciNet review: 1196162