ON WEIGHTED SOBOLEV INTERPOLATION INEQUALITIES

SENG-KEE CHUA

(Communicated by Andrew M. Bruckner)

Abstract. We obtain some weighted Sobolev interpolation inequalities on \(\mathbb{R}^n \) and domains satisfying the Boman chain condition for doubling weights satisfying a weighted Poincaré inequality.

1. Introduction

Recently, there has been a significant number of papers on weighted Sobolev interpolation inequalities, for example, Brown and Hilton [3-5], Gutierrez and Wheeden [18], and Chua [9]. In this paper, we will study weighted Sobolev interpolation inequalities with weights satisfying the following inequality:

\[
\|f - f_Q\|_{L^p(Q)} \leq A(Q)\|
\nabla f\|_{L^q(Q)}
\]

as in [18] where \(f_Q = \int_Q f \, dx / |Q| \). Let us note that some sufficient conditions have been obtained for (1.1); see [27], [26], or [7].

Definition 1.1 [19]. An open set \(\mathcal{D} \) in \(\mathbb{R}^n \) is said to be a member of \(\mathcal{F}(\sigma, N) \), \(\sigma \geq 1 \), \(N \geq 1 \), if there exists a covering \(W \) of \(\mathcal{D} \) consisting of cubes such that:

(i) \(\sum_{Q \in W} \chi_{\sigma Q}(x) \leq N \chi_{\mathcal{D}}(x) \quad \forall x \in \mathbb{R}^n \).

(ii) There is a 'central cube' \(Q_0 \in W \) that can be connected with every cube \(Q \in W \) by a finite chain of cubes \(Q_0, Q_1, \ldots, Q_k(Q) = Q \) from \(W \) such that \(Q \subset NQ_j \) for \(j = 0, 1, \ldots, k(Q) \). Moreover, \(Q_j \cap Q_{j+1} \) contains a cube \(R_j \) such that \(Q_j \cup Q_{j+1} \subset NR_j \).

We say that \(\mathcal{D} \) satisfies the Boman chain condition if \(\mathcal{D} \in \mathcal{F}(\sigma, N) \) for some \(N \), \(\sigma \geq 1 \). There are many types of domains that satisfy the Boman chain condition, for example, balls, cubes, and John domains (see [19]). Moreover, it is easy to check that bounded \((\varepsilon, \infty) \) domains (see [20] or [9] for the definition) satisfy the Boman chain condition. Hence, do bounded Lipschitz domains. In what follows, \(Q \) is always a cube and \(l(Q) \) will be its edgelength. If \(1 < p < \)
p' will denote $p/(p-1)$. By a weight w, we mean a nonnegative locally integrable function on \mathbb{R}^n. By abusing notation, we will also write w for the measure induced by w. Sometimes we write dw to denote $w \, dx$. We say that w is doubling if $w(2Q) \leq Cw(Q)$ for every cube Q, where $2Q$ denotes the cube with the same center as Q and twice its edgelength. By $w \in A_p$, we mean w satisfies the Muckenhoupt A_p condition, i.e.,

$$\frac{1}{|Q|} \left(\int_Q w \, dx \right)^{1/p} \left(\int_Q w^{-1/(p-1)} \, dx \right)^{1/p'} \leq C \quad \text{when } 1 < p < \infty,$$

and

$$\frac{1}{|Q|} \int_Q w(x) \, dx \leq C \text{ ess inf}_{x \in Q} w(x) \quad \text{when } p = 1,$$

for all cubes Q in \mathbb{R}^n. Note that w is doubling when it is in A_p.

Let \mathcal{D} be an open set in \mathbb{R}^n. If α is a multi-index, $\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_n) \in \mathbb{Z}_+^n$, we will denote $\sum_{j=1}^n \alpha_j$ by $|\alpha|$ and $D^\alpha = (\partial/\partial x_1)^{\alpha_1} \cdots (\partial/\partial x_n)^{\alpha_n}$. We denote by ∇ the vector $(\partial/\partial x_1, \partial/\partial x_2, \ldots, \partial/\partial x_n)$ and by ∇^m the vector of all possible mth-order derivatives for $m \in \mathbb{N}$. A locally integrable function f on \mathcal{D} (we will write $f \in L^1_{\text{loc}}(\mathcal{D})$) has a weak derivative of order α if there is a locally integrable function (denoted by $D^\alpha f$) such that

$$\int_{\mathcal{D}} f(D^\alpha \varphi) \, dx = (-1)^{|\alpha|} \int_{\mathcal{D}} (D^\alpha f) \varphi \, dx$$

for all C^∞ functions φ with compact support in \mathcal{D} (we will write $\varphi \in C^\infty(\mathcal{D})$).

For $1 \leq p < \infty$, $k \in \mathbb{N}$, and any weight w, $L^p_{w,k}(\mathcal{D})$ and $E^p_{w,k}(\mathcal{D})$ are the spaces of functions having weak derivatives of all orders α, $|\alpha| \leq k$, and satisfying

$$\|f\|_{L^p_{w,k}(\mathcal{D})} = \sum_{0 \leq |\alpha| \leq k} \|D^\alpha f\|_{L^p_w(\mathcal{D})} = \sum_{0 \leq |\alpha| \leq k} \left(\int_{\mathcal{D}} |D^\alpha f|^p \, dw \right)^{1/p} < \infty$$

and

$$\|f\|_{E^p_{w,k}(\mathcal{D})} = \sum_{|\alpha| = k} \|D^\alpha f\|_{L^p_w(\mathcal{D})} < \infty,$$

respectively. Moreover, in the case when $w \equiv 1$, we will denote $L^p_{w,k}(\mathcal{D})$ and $E^p_{w,k}(\mathcal{D})$ by $L^p_k(\mathcal{D})$ and $E^p_k(\mathcal{D})$, respectively. Finally, let $\Lambda^k(\mathcal{D})$ be the collection of all functions f on \mathcal{D} such that all its weak derivatives of order $\leq k$ exist.

We will prove that

Theorem 1.2. Let $\mathcal{D} \in \mathcal{F}(\sigma, N)$, and let W be a covering of \mathcal{D} satisfying the Boman chain condition. Let $1 \leq p \leq q < \infty$. If v is a weight and w is a doubling weight such that (1.1) holds for all $Q \in W$ and $f \in \Lambda^1(\mathcal{D})$, then

$$\|\nabla f\|_{L^q_w(\mathcal{D})} \leq C w(Q_0)^{1/q} l(Q_0)^{-n} (l(Q_0))^{-1} \|f\|_{L^1(Q_0)} + l(Q_0) \|\nabla^2 f\|_{L^1(\mathcal{D})} + C A_0 \|\nabla f\|_{L^1(\mathcal{D})}$$

for all $f \in \Lambda^2(\mathcal{D})$ where $A_0 = \sup_{Q \in W} A(Q)$, Q_0 is the 'central' cube in W, and C is independent of f and v.
Theorem 1.3. Let \(1 \leq p \leq q < \infty \). Suppose that \(v \) is a weight and \(w \) is a doubling weight such that

\[
\| f - f_Q \|_{L^p_w(Q)} \leq C_0 w(Q)^{1/q} v'(Q)^{1/p'} l(Q)^{-n+1} \| \nabla f \|_{L^q_v(Q)}
\]

for all cubes \(Q \) and \(f \in \Lambda^1(\mathbb{R}^n) \) where \(v' = v^{-1/(p-1)} \) (\(v'(Q)^{1/p'} = \text{ess sup}_{x \in Q} v^{-1}(x) \) when \(p = 1 \)). Then

\[
\| \nabla^k f \|_{L^p_v(Q)} \leq C w(Q)^{1/q} l(Q)^{-n-k} \| f \|_{L^1_v(Q)} + C w(Q)^{1/q} v'(Q)^{1/p'} l(Q)^{-n+1} \| \nabla^{k+1} f \|_{L^q_v(Q)}
\]

for all cubes \(Q \) and \(f \in \Lambda^{k+1}(\mathbb{R}^n) \) where \(C \) is independent of \(f \).

Moreover, if \(\| \nabla^{k+1} f \|_{L^q_v(Q)} \neq 0 \) and there exist \(a < 1 \), \(b > (1 - k)/2 \), \(1 \leq p_0 \leq q \), and weight \(v_0 \) such that

\[
l(Q)^{(2b-1-n)} w(Q)^{1/q} v_0'(Q)^{1/p_0} + l(Q)^{(2a-1-n)} w(Q)^{1/q} v'(Q)^{1/p'} \leq C
\]

for all cubes \(Q \), then

\[
\| \nabla^k f \|_{L^p_v(Q)} \leq C \| f \|_{L^p_v(Q)}^{1-(2b+k-1)/(1+k+2(b-a))} \| \nabla^{k+1} f \|_{L^q_v(Q)}^{(2b+k-1)/(1+k+2(b-a))}
\]

In particular, under the assumptions stated above, we have

\[
\| \nabla^k f \|_{L^p_v(Q)} \leq C \| f \|_{L^p_v(Q)}^{1-(2a+k-1)/(1+k)} \| \nabla^{k+1} f \|_{L^q_v(Q)}^{(2a+k-1)/(1+k)}
\]

These theorems have some interesting corollaries.

Corollary 1.4. Let \(1 \leq p \leq q < \infty \), and let \(\mathcal{D} \), \(W \), \(v \), and \(w \) be as in Theorem 1.2 such that

\[
\| f - f_Q \|_{L^p_w(Q)} \leq A \| \nabla f \|_{L^q_v(Q)}
\]

for all \(Q \in W \) and \(f \in \Lambda^1(\mathcal{D}) \). Then \(E^p_{v,k+1}(\mathcal{D}) \subseteq E^q_{w,k}(\mathcal{D}) \) for all \(k \in \mathbb{N} \).

Corollary 1.5. Let \(\mathcal{D} \) and \(W \) be as in Theorem 1.2. Suppose \(1 \leq p \leq q < \infty \) and \(w \) is a doubling weight such that

\[
\| f - f_Q \|_{L^p_w(Q)} \leq A \| \nabla f \|_{L^q_v(Q)}
\]

for all \(Q \in W \) and \(f \in \Lambda^1(\mathcal{D}) \). Then \(f \in E^p_{w,k}(\mathcal{D}) \) if and only if \(f \in L^p_{w,k}(\mathcal{D}) \).

Note that when \(w \in A_p \) and \(\mathcal{D} \) is a bounded \((\varepsilon, \infty)\) domain, it has been obtained in [9] that \(E^p_{w,k}(\mathcal{D}) = L^p_{w,k}(\mathcal{D}) \).

Corollary 1.6. Let \(1 \leq p \leq q < \infty \), \(v \in A_p \), and \(w \) be a doubling weight such that (1.2) holds. Let \(i, k \in \mathbb{N}, \ 1 \leq i < k \), and \(-i < a' < k - i \). Then

\[
\| \nabla^i f \|_{L^p_v(Q)} \leq C \| f \|_{L^p_v(Q)}^{1-(a'+i)/k} \| \nabla^k f \|_{L^q_v(Q)}^{(a'+i)/k}
\]

for all \(f \in \Lambda^k(\mathbb{R}^n) \) and \(\| \nabla^k f \|_{L^q_v(Q)} \neq 0 \) if and only if

\[
l(Q)^{a'} w(Q)^{1/q} \leq C v(Q)^{1/p}
\]

for all cubes \(Q \).

Note that when \(p > 1 \), \(i = 1 \), and \(k = 2 \), Corollary 1.6 is first obtained by Gutierrez and Wheeden [18].

Finally, similar to Theorems 1.8 and 1.9 in [9], we could apply the extension theorems in [9] to get the following two corollaries.
Corollary 1.7. Let \(1 \leq p \leq q < \infty, \ v \in A_p, \) and let \(\mathcal{D} \) be a bounded \((\varepsilon, \infty)\) domain. Let \(i, k \in \mathbb{N} \) such that \(1 \leq i < k \). Let \(w \) be a doubling weight such that (1.2) and (1.4) hold for \(-i < a' < k - i \). If \(f \in L^p_{v,k}(\mathcal{D}) \) and there exists a cube \(Q \) in \(\mathcal{D} \) such that \(f = 0 \) on \(Q \) and \(\nabla^k f \neq 0 \) a.e. on \(\mathcal{D} \), then

\[
\|\nabla^i f\|_{L^q_w(\mathcal{D})} \leq C \|f\|_{L^p_w(\mathcal{D})}^{(k-a')/k} \|\nabla^k f\|_{L^p_w(\mathcal{D})}^{(a'+i)/k}
\]

where \(C \) depends only on \(\mathcal{D}, w, v, k, n, p, q, \) and \(Q \).

Corollary 1.8. Let \(\mathcal{D} \) be an unbounded \((\varepsilon, \infty)\) domain, and let \(v, w, p, q, i, \) and \(k \) be as in the preceding corollary. If \(f \in L^p_{v,k}(\mathcal{D}) \) and \(\nabla^k f \neq 0 \) a.e. on \(\mathcal{D} \), then

\[
\|\nabla^i f\|_{L^q_w(\mathcal{D})} \leq C \|f\|_{L^p_w(\mathcal{D})}^{(k-a')/k} \|\nabla^k f\|_{L^p_w(\mathcal{D})}^{(a'+i)/k}
\]

where \(C \) depends only on \(\varepsilon, p, q, v, w, k, \) and \(n \).

Remark 1.9. (a) Let \(\mathcal{D} \subset \overline{\mathcal{D}}(\sigma, N) \) for some \(\sigma, N \geq 1 \) and \(M \subset \partial \mathcal{D} \) (the boundary of \(\mathcal{D} \)). Suppose \(w(x) = \text{dist}(x, M) = \inf_{y \in M} |x - y| \). Let \(W \) be a covering of \(\mathcal{D} \) that satisfies the chain condition. Let \(\alpha \in \mathbb{R} \). Then it is clear that if \(1 \leq p \leq q < \infty \), then

\[
\|f - f_Q\|_{L^q_{w^\alpha}(Q)} \leq C l(Q) \|\nabla f\|_{L^q_w(Q)},
\]

and indeed, when \(1 - \left(\frac{n}{p} - \frac{n}{q}\right) \geq 0 \),

\[
\|f - f_Q\|_{L^q_{w^\alpha}(Q)} \leq C l(Q)^{1-(n/p-n/q)} \text{dist}(Q, M)^{\alpha/q-\beta/p} \|\nabla f\|_{L^q_w(\mathcal{D})}
\]

for \(f \in \Lambda^1(\mathbb{R}^n) \) and \(Q \in W \) with \(C \) depending only on \(\sigma, N, n, p, \alpha, \beta, \) and \(q \). These estimates can easily be obtained by the fact that \(w \) is comparable to \(\text{dist}(Q, M) \) on \(Q \) and the unweighted Poincaré type estimate.

We can now apply Theorem 1.2 to conclude that when \(w^\alpha \) is doubling,

\[
\|\nabla^k f\|_{L^q_{w^\alpha}(\mathcal{D})} \leq C \|f\|_{L^1(Q_0)} + C \|\nabla^{k+1} f\|_{L^1(Q_0)} + C \|\nabla^{k+1} f\|_{L^q_w(\mathcal{D})}
\]

provided \(1 - \left(\frac{1}{p} - \frac{1}{q}\right)n + \frac{\alpha}{q} - \frac{\beta}{p} \geq 0 \) and \(1 - \left(\frac{n}{p} - \frac{n}{q}\right) \geq 0 \) with \(C \) depending only on \(\sigma, N, n, p, \alpha, \beta, \) and \(q \). Hence, for all \(k \in \mathbb{N} \), \(E^p_{w^\alpha,k+1}(\mathcal{D}) \subset E^p_{w^\alpha,k}(\mathcal{D}) \) for such \(p, q, \alpha, \) and \(\beta \). Moreover, if \(p = q \) and \(\alpha = \beta \), we have \(E^p_{w^\alpha,k}(\mathcal{D}) = L^p_{w^\alpha,k}(\mathcal{D}) \).

(b) Furthermore, if \(w(x) = s(\text{dist}(x, M)) \) where \(s \) is a positive and continuous function on the positive real numbers that satisfies certain properties described in Kufner [21], a similar conclusion can be obtained by Theorem 1.2 if we know that \(w \) is doubling.

(c) We do not know exactly when the weights \(w \) defined as above are doubling. However, in the case that \(M \) is just a finite subset of \(\partial \mathcal{D} \), it is easy to see that \(\text{dist}(x, M)^\alpha \) is doubling if and only if \(\alpha > -n \).

2. Preliminaries

In what follows, \(C \) denotes various positive constants. They may differ even in the same string of estimates. Moreover, sometimes, we will use \(C(\alpha, \beta, \ldots) \) instead of \(C \) to emphasize that the constant is depending on \(\alpha, \beta, \ldots \).

Since one of our main tools will be a projection of functions into polynomials, first let us state an inequality on polynomials.
Theorem 2.1. Let F, Q be cubes such that $F \subset Q$ and $|F| > \gamma|Q|$. If w is a doubling weight, $1 \leq q < \infty$, and p is a polynomial of degree m, then
\[
\|p\|_{L^q_w(F)} \leq C(\gamma, m, n, w) \left(\frac{w(E)}{w(F)} \right)^{1/q} \|p\|_{L^q_w(F)}
\]
for all measurable sets $E \subset Q$.

This theorem is just a consequence of the following two lemmas.

Lemma 2.2 [29, Chapter 3, Lemma 7]. If w is a doubling measure and m is a positive integer, then there exists $s_0(n, m, w)$ such that if $s < s_0$, then for all cubes Q, $\lambda > 0$ such that
\[
\lambda w(\{x \in Q : |p(x)| > \lambda\}) \leq s w(Q)
\]
we have $\sup_{x \in Q} |p(x)| \leq C \lambda$, where p is any polynomial of degree m and C is a constant independent of λ, Q, and p.

It follows from Chebyshev's inequality and this lemma that given m and a polynomial p of degree m,
\[
\|p\|_{L^\infty(Q)} \leq \frac{C}{w(Q)} \|p\|_{L^1(Q)}
\]
with C independent of Q and p.

Lemma 2.3 [9, Theorem 2.2]. Let Q be a cube, and let E be a measurable set in Q with $|E| > \gamma|Q|$. If p is a polynomial of degree m, then
\[
\|p\|_{L^\infty(E)} \geq C(\gamma, m)\|p\|_{L^1(Q)}
\]

Next, let us state Markov's inequality; see, for example, [1].

Theorem 2.4. Let p be any polynomial of order less than k. Then there exists a constant C depending only on k and the dimension n such that
\[
\|\nabla p\|_{L^\infty(Q)} \leq C(\gamma, Q)^{-1}\|p\|_{L^\infty(Q)}
\]
for all cubes Q in \mathbb{R}^n.

Finally, the following is now a consequence of Markov's inequality and Lemma 2.2.

Theorem 2.5. Let p be a polynomial of order less than k and $1 \leq q < \infty$. If w is doubling, then
\[
\|\nabla p\|_{L^q_w(Q)} \leq C(\gamma, Q)^{-1}\|p\|_{L^q_w(Q)}
\]
for all cubes Q in \mathbb{R}^n, where C depends only on k, w, q, and n.

Now let us state a theorem from [12].

Theorem 2.6. Let σ, $N \geq 1$, $1 \leq p, q < \infty$, $k \in \mathbb{N}$, and $\mathcal{D} \in \mathcal{F}(\sigma, N)$, and let f, g be measurable functions defined on \mathcal{D}. Also, let ν be a weight, and let w be a doubling weight. Suppose that for each cube Q with $\sigma Q \subset \mathcal{D}$, there exists a polynomial $P(f, Q)$ of degree k such that
\[
\|f - P(f, Q)\|_{L^q_w(Q)} \leq A\|g\|_{L^1_w(\sigma Q)}
\]
with A independent of Q. Then there exists a polynomial $P(f, \mathcal{D})$ of degree k such that
\[
\|f - P(f, \mathcal{D})\|_{L^q_w(\mathcal{D})} \leq CA\|g\|_{L^1_w(\mathcal{D})}
\]
where C depends only on $n, q, w, \sigma, k, \mbox{ and } N$. Moreover, we can take
$P(f, \mathcal{D}) = P(f, Q_0)$ where Q_0 is the 'central' cube in \mathcal{D}.

Let \mathcal{P}_k be the collection of all polynomials with degree $< k$ on \mathbb{R}^n. Now,
let us state a theorem concerning the projection of function into polynomials.

Theorem 2.7. Let \mathcal{D} be an open set. For each $k \in \mathbb{N}$ and cubes $Q \subset \mathcal{D}$, there
exists a projection $\pi_k(Q) : \Lambda^k(\mathcal{D}) \to \mathcal{P}_k$ such that

$$\text{ess sup } |\pi_k(Q)f(x)| \leq C l(Q)^{-n} \|f\|_{L^1(Q)}$$

with C independent of f and Q. Moreover, $\pi_k(Q)$ is linear and $\pi_k(Q)p = p$ for all $p \in \mathcal{P}_k$.

For the proof, please refer to [9] or [10].

Finally, let us state the weighted Poincaré inequality for A_p weights. For the
proof, see [9].

Theorem 2.8. If $1 < p < \infty$, and $v \in A_p$, then

$$\|f - f_Q\|_{L^p(Q)} \leq C l(Q) \|\nabla f\|_{L^p(Q)}$$

for all cubes Q and $f \in \Lambda^1(\mathbb{R}^n)$ where C depends only on $p, v, \mbox{ and } n$.

3. Proof of main results

Proof of Theorem 1.2. First let us fix $f \in \Lambda^2(\mathcal{D})$ such that $|\nabla^2 f| \in L^p(\mathcal{D})$.
Next, we let $P_{Q_0} f$ be the polynomial of degree 1 such that $\int_{Q_0} D^a (f - P_{Q_0} f) \, dx = 0$ for all $|a| \leq 1$. Now, by Theorem 2.6,

$$\|\nabla (f - P_{Q_0} f)\|_{L^q_q(\mathcal{D})} \leq C A_2 \|\nabla^2 f\|_{L^q_q(\mathcal{D})},$$

where $A_2 = \sup_{Q \in \mathcal{W}} A(Q)$. Next, let us note that

$$\|\nabla P_{Q_0} f\|_{L^q_q(\mathcal{D})} \leq C \|\nabla P_{Q_0} f\|_{L^q_q(Q_0)} \quad \text{(by Theorem 2.1)}$$

$$\leq C \|\nabla (P_{Q_0} f - \pi_2(Q_0) f)\|_{L^q_q(Q_0)} + \|\nabla \pi_2(Q_0) f\|_{L^q_q(Q_0)}$$

$$\leq C l(Q_0)^{-1} \|P_{Q_0} f - \pi_2(Q_0) f\|_{L^q_q(Q_0)}$$

$$+ C l(Q_0)^{-1} \|\pi_2(Q_0) f\|_{L^q_q(Q_0)} \quad \text{(by Theorem 2.5)}$$

$$\leq C l(Q_0)^{-1} \|w(Q_0)^{1/q} \| f - P_{Q_0} f\|_{L^1(Q_0)}$$

$$+ C l(Q_0)^{-1} \|w(Q_0)^{1/q} \| f\|_{L^1(Q_0)} \quad \text{(by Theorem 2.7)}$$

$$\leq C l(Q_0)^{-1} \|w(Q_0)^{1/q} \| \nabla^2 f\|_{L^1(Q_0)} + C l(Q_0)^{-1} \|w(Q_0)^{1/q} \| f\|_{L^1(Q_0)}$$

by the nonweighted Poincaré inequality. Hence

$$\|\nabla f\|_{L^q_q(\mathcal{D})} \leq C \|\nabla P_{Q_0} f\|_{L^q_q(\mathcal{D})} + C A_2 \|\nabla^2 f\|_{L^q_q(\mathcal{D})}$$

$$\leq C l(Q_0)^{-1} \|w(Q_0)^{1/q} \| \nabla^2 f\|_{L^1(Q_0)}$$

$$+ C l(Q_0)^{-1} \|w(Q_0)^{1/q} \| f\|_{L^1(Q_0)} + C A_2 \|\nabla^2 f\|_{L^q_q(\mathcal{D})}.$$
Proof of Theorem 1.3. Similar to the proof as above, for any cube Q, we have
\[
\|\nabla^k f\|_{L^q_\ast(Q)} \leq Cw(Q)^{1/q} l(Q)^{-k-n} \|f\|_{L^1(Q)} + Cw(Q)^{1/q} l(Q)^{1-n} \|\nabla^{k+1} f\|_{L^q(Q)} + Cw(Q)^{1/q} v'(Q)^{1/p} l(Q)^{-n+1} \|\nabla^{k+1} f\|_{L^\infty_\ast(Q)}
\]
\[
\leq Cw(Q)^{1/q} l(Q)^{-k-n} v'(Q)^{1/p} l(Q)^{1-n} \|\nabla^{k+1} f\|_{L^q(Q)} + Cw(Q)^{1/q} v'(Q)^{1/p} l(Q)^{-n+1} \|\nabla^{k+1} f\|_{L^\infty_\ast(Q)}
\]
by Hölder's inequality. Next, if (1.3) holds, then for all cubes Q we have
\[
\|\nabla^k f\|_{L^q_\ast(Q)} \leq Cl(Q)^{-b-k+1} \|f\|_{L^p_\ast(Q)} + Cl(Q)^{2-2a} \|\nabla^{k+1} f\|_{L^\infty_\ast(Q)}.
\]
Now, for all $\varepsilon > 0$, we will cover \mathbb{R}^n by cubes of length ε. Let W' be any nonoverlapping cover of cubes with length ε. Summing up the cubes, we have
\[
\|\nabla f\|^q_{L^q_\ast(\mathbb{R}^n)} \leq C\varepsilon^{-(b-k+1)q} \sum_{Q \in W'} \|f\|^q_{L^p_\ast(Q)} + C\varepsilon^{(2-2a)q} \sum_{Q \in W'} \|\nabla^k f\|^q_{L^q_\ast(Q)}.
\]
Thus
\[
\|\nabla^k f\|_{L^q_\ast(\mathbb{R}^n)} \leq C\varepsilon^{-b-k+1} \left(\sum_{Q \in W'} \|f\|^p_{L^p_\ast(Q)} \right)^{1/p} + C\varepsilon^{(2-2a)} \left(\sum_{Q \in W'} \|\nabla^k f\|^p_{L^q_\ast(Q)} \right)^{1/p}
\]
since $q \geq p_0, p$. Hence,
\[
\|\nabla f\|_{L^q_\ast(\mathbb{R}^n)} \leq C\varepsilon^{-b-k+1} \|f\|_{L^p_\ast(\mathbb{R}^n)} + C\varepsilon^{(2-2a)} \|\nabla^k f\|_{L^\infty_\ast(\mathbb{R}^n)}.
\]
To complete the proof just choose $\varepsilon = \left(\|f\|^p_{L^p_\ast(\mathbb{R}^n)}/\|\nabla^k f\|^p_{L^\infty_\ast(\mathbb{R}^n)} \right)^{1/(1+k+2(b-a))}$.

Next, let us note that Corollaries 1.4 and 1.5 are just immediate consequences of Theorem 1.2.

Proof of Corollary 1.6. First note that by similar arguments as above, for any cube Q and $f \in L^\infty_{\ast,k}(\mathbb{R}^n)$, let $P_Q f$ be the unique polynomial of degree $< k$ such that $\int_Q D^\alpha (f - P_Q f) \, dx = 0$ for all $|\alpha| < k$, we have
\[
\|\nabla^i P_Q f\|_{L^q_\ast(Q)} \leq Cw(Q)^{1/q} l(Q)^{-i-n} \|f\|_{L^1(Q)} + Cw(Q)^{1/q} l(Q)^{1-n} \|\nabla^{k+i} f\|_{L^1(Q)}
\]
\[
\leq Cw(Q)^{1/q} l(Q)^{-i} v(Q)^{1/p} l(Q)^{-n+i} \|f\|_{L^p_\ast(Q)} + Cw(Q)^{1/q} v'(Q)^{1/p} l(Q)^{1-n} \|\nabla^k f\|_{L^\infty_\ast(Q)}
\]
since $v \in A_p$. Also,
\[
\|\nabla^i (f - P_Q f)\|_{L^q_\ast(Q)} \leq Cl(Q)^{1/q} v(Q)^{-i} \|\nabla^{i+1} (f - P_Q f)\|_{L^\infty_\ast(Q)} \leq Cl(Q)^{1/q} v(Q)^{-i} \|\nabla^k f\|_{L^\infty_\ast(Q)}
\]
by Theorem 2.8. Hence by the triangle inequality and (1.4),
\[
\|\nabla^i f\|_{L^q_\ast(Q)} \leq \|\nabla^i (f - P_Q f)\|_{L^q_\ast(Q)} + \|\nabla^i P_Q f\|_{L^q_\ast(Q)} \leq Cl(Q)^{-a'-i} \|f\|_{L^p_\ast(Q)} + Cl(Q)^{-a'+k-i} \|\nabla^k f\|_{L^\infty_\ast(Q)}.
\]
We can now just follow as before to show
$$\|\nabla^i f\|_{L^p_0(R^n)} \leq C \|f\|_{L^p_1(R^n)}^{1-(a'+i)/k} \|\nabla^k f\|_{L^p_1(R^n)}^{(a'+i)/k}$$
for all $f \in L^p_{\nu, k}(R^n)$ with $\|\nabla^k f\|_{L^p_1(R^n)} \neq 0$. Finally, the reader can refer to the proof of Theorem 5 in Gutierrez and Wheeden [18] for the converse.

Finally, let us note that the proof of Corollaries 1.7 and 1.8 are almost identical to the proof of Theorems 1.8 and 1.9 in [9] with the help of Corollary 1.6.

References

DEPARTMENT OF MATHEMATICS, NATIONAL UNIVERSITY OF SINGAPORE, 10 KENT RIDGE ROAD, SINGAPORE 0511, SINGAPORE

E-mail address: matcsk@nusunix.nus.sg