A characterization of positive constrictive operators
HTML articles powered by AMS MathViewer
- by Hong Ke Du
- Proc. Amer. Math. Soc. 121 (1994), 755-759
- DOI: https://doi.org/10.1090/S0002-9939-1994-1185265-0
- PDF | Request permission
Abstract:
In this note we prove that if T is a positive operator on a real Banach lattice, then T is constrictive if and only if that T has the operator matrix decomposition \[ T = \left ( {\begin {array}{*{20}{c}} {{T_1}} & 0 \\ 0 & {{T_2}} \\ \end {array} } \right ),\] where ${T_1}$ is a power-bounded generalized permutation matrix on a finite-dimensional space and $T_2^n \to 0$ strongly.References
- Charalambos D. Aliprantis and Owen Burkinshaw, Positive operators, Pure and Applied Mathematics, vol. 119, Academic Press, Inc., Orlando, FL, 1985. MR 809372
- Wojciech Bartoszek, Asymptotic periodicity of the iterates of positive contractions on Banach lattices, Studia Math. 91 (1988), no. 3, 179–188. MR 985720, DOI 10.4064/sm-91-3-179-188
- Hong Ke Du, Spectral properties and ergodicity of quasicompact operators, Acta Math. Sinica 36 (1993), no. 3, 358–365 (Chinese, with Chinese summary). MR 1247090 Hua Luogen, Introduction to advance mathematics (remaint), Academic Press, Beijing, 1984.
- A. Lasota, T.-Y. Li, and J. A. Yorke, Asymptotic periodicity of the iterates of Markov operators, Trans. Amer. Math. Soc. 286 (1984), no. 2, 751–764. MR 760984, DOI 10.1090/S0002-9947-1984-0760984-4
- M. Miklavčič, Asymptotic periodicity of the iterates of positivity preserving operators, Trans. Amer. Math. Soc. 307 (1988), no. 2, 469–479. MR 940213, DOI 10.1090/S0002-9947-1988-0940213-2
- Helmut H. Schaefer, Banach lattices and positive operators, Die Grundlehren der mathematischen Wissenschaften, Band 215, Springer-Verlag, New York-Heidelberg, 1974. MR 0423039, DOI 10.1007/978-3-642-65970-6
- H. H. Schaefer, A metric variant of Frobenius’s theorem and some other remarks on positive matrices, Linear Algebra Appl. 42 (1982), 175–182. MR 656423, DOI 10.1016/0024-3795(82)90147-1
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 121 (1994), 755-759
- MSC: Primary 47A35; Secondary 47B65, 47D07
- DOI: https://doi.org/10.1090/S0002-9939-1994-1185265-0
- MathSciNet review: 1185265