PERTURBATION OF SPECTRUMS OF 2×2 OPERATOR MATRICES

DU HONG-KE AND PAN JIN

(Communicated by Palle E. T. Jorgensen)

Abstract. In this paper, we study the perturbation of spectra of 2×2 operator matrices such as $M_C = \begin{bmatrix} A & C \\ 0 & B \end{bmatrix}$ on the Hilbert space $H \oplus K$. For given A and B, we prove that

$$\bigcap_{C \in B(K, H)} \sigma(M_C) = \sigma_\pi(A) \cup \sigma_\delta(B) \cup \{ \lambda \in \mathbb{C} : n(B - \lambda) \neq d(A - \lambda) \},$$

where $\sigma(T)$, $\sigma_\pi(T)$, $\sigma_\delta(T)$, $n(T)$, and $d(T)$ denote the spectrum of T, approximation point spectrum, defect spectrum, nullity, and deficiency, respectively. Some related results are obtained.

1. Introduction

Let H and K be Hilbert spaces. Throughout this paper "operator" shall always mean "bounded linear operator". In this note, we will discuss the perturbation of spectra of 2×2 upper triangular operator matrices on $H \oplus K$ as the following form:

$$M_C = \begin{bmatrix} A & C \\ 0 & B \end{bmatrix}.$$

Although 2×2 upper triangular operator matrices have been frequently used in many literatures (see [1]), its perturbations of spectra have not been considered significantly thus far.

In order to state our main result, let us introduce some notation and then continue with a simple lemma. $B(H)$, $B(K)$, and $B(K, H)$ denote the set of all linear bounded operators on H, on K, and from K into H, respectively. For an operator T, $\sigma_\pi(T) = \{ \lambda \in \mathbb{C} : \text{there is a sequence } \{ x_n \} \text{ of unit vectors } \text{such that } (T - \lambda)x_n \to 0 \}$ is the approximation point spectrum of T. $\sigma_\delta(T) = \{ \lambda \in \mathbb{C} : T - \lambda \text{ is not surjective} \}$ is the defect spectrum of T. $n(T)$ is the nullity of T which is equal to $\dim N(T)$. $d(T)$ is the deficiency of T which is equal to $\dim N(T^*)$. $N(T)$ denotes the null space of an operator T. $R(T)$ is the range of T. $\sigma(T)$ is the spectrum of T.

Lemma 1. If $A \in B(H)$, $B \in B(K)$, and $C \in B(K, H)$, then $\sigma(M_C) \subset \sigma(A) \cup \sigma(B)$.

Received by the editors June 11, 1992 and, in revised form, October 7, 1992.

1991 Mathematics Subject Classification. Primary 47A55, 47A10.

Key words and phrases. Perturbation of spectrums, 2×2 operator matrices.
Proof. Since
\[
\begin{bmatrix}
I & 0 \\
0 & nI
\end{bmatrix}
\begin{bmatrix}
A & C \\
0 & B
\end{bmatrix}
\begin{bmatrix}
I & 0 \\
0 & \frac{1}{n}I
\end{bmatrix} = \begin{bmatrix}
A & \frac{1}{n}C \\
0 & B
\end{bmatrix},
\]
letting \(n \to \infty \), we have the limit
\[
\begin{bmatrix}
A & 0 \\
0 & B
\end{bmatrix} = \lim_{n \to \infty} \begin{bmatrix}
A & \frac{1}{n}C \\
0 & B
\end{bmatrix}.
\]
Thus, by the upper semicontinuity of spectrum, \(\sigma(M_C) \subseteq \sigma([A \ 0]_B) = \sigma(A) \cup \sigma(B) \).

From the above lemma, some natural questions arise.

Question 1. Is there an operator \(C \in B(K, H) \) such that the inclusion in Lemma 1 is proper for given \(A \) and \(B \)?

Question 2. \(\bigcap_{C \in B(K, H)} \sigma(M_C) = \).?

Question 3. Is there an operator \(C_0 \in B(K, H) \) such that
\[
\sigma(M_{C_0}) = \bigcap_{C \in B(K, H)} \sigma(M_C)
\]
for a given pair \((A, B)\) of operators, where \(A \in B(H) \) and \(B \in B(K) \)?

In this note, we give complete answers for Questions 1 and 2, but Question 3 is still open.

Theorem 2. For a given pair \((A, B)\) of operators, we have
\[
\bigcap_{C \in B(K, H)} \sigma(M_C) = \sigma(A) \cup \sigma(B) \cup \{\lambda \in C : n(B - \lambda) \neq d(A - \lambda)\}.
\]

Proof. We will divide the proof into two steps.

In the first step we shall prove that the left side of the above equality includes the right side.

Claim. \(\sigma(A) \cup \sigma(B) \subseteq \bigcap_{C \in B(K, H)} \sigma(M_C) \).

For any \(C \in B(K, H) \), if \(\lambda \in \sigma(A) \), then there exists a sequence \(\{x_n\} \) of unit vectors in \(H \) such that \((A - \lambda)x_n \to 0 \) (as \(n \to \infty \)). For \(M_C \), consider the sequence \(\{(x_n^0)\} \) of unit vectors in \(H \oplus K \). We have
\[
(M_C - \lambda)\begin{pmatrix} x_n \\ 0 \end{pmatrix} = \begin{pmatrix} (A - \lambda)x_n \\ 0 \end{pmatrix} \to 0,
\]
so \(\lambda \in \sigma(M_C) \). If \(\lambda \in \sigma(B) \) since \(\bar{\lambda} \in \delta_\pi(B^*) \), by the similar argument we have \(\bar{\lambda} \in \sigma(M_C^*) \); therefore, \(\lambda \in \sigma(M_C) \).

Claim. If \(\lambda \in \{\lambda \in C : d(A - \lambda) \neq n(B - \lambda)\} \setminus \sigma(A) \cup \sigma(B) \), then \(\lambda \in \sigma(M_C) \) for any \(C \in B(K, H) \).

We shall divide this claim into two cases to consider.

Case 1. Assume that \(n(B - \lambda) < d(A - \lambda) \). Then \(R(A - \lambda) + CN(B - \lambda) \neq H \).

Take a nonzero vector \(y_0 \in H \setminus (R(A - \lambda) + CN(B - \lambda)) \); we will prove that \(y_0 \notin R(M_C - \lambda) \). To do this it has the decomposition \(x = y + z \) for any vector \(x \in H \oplus K \), where \(y \in H \) and \(z \in K \). Thus we have
\[
(M_C - \lambda)x = (A - \lambda)y + Cz + (B - \lambda)z.
\]
If there exists a vector \(x \) with \((M_C - \lambda)x = y_0\), since \(y_0 \in H \), we must have \((B - \lambda)z = 0\). Therefore, \((A - \lambda)y + Cz = y_0 \in R(A - \lambda) + CN(B - \lambda)\), but it contradicts the hypothesis about \(y_0 \). Hence \(\lambda \in \sigma_\delta(M_C) \subset \sigma(M_C)\).

Case 2. Assume that \(n(B - \lambda) > d(A - \lambda)\). Then \(d(A - \lambda) < \infty \). If \(N(C) \cap N(B - \lambda) \neq \{0\} \), then for any nonzero vector \(z_0 \in N(C) \cap N(B - \lambda)\), we have \(M_Cz_0 = 0\); therefore, \(\lambda \in \sigma_p(M_C) \subseteq \sigma(M) \) (\(\sigma_p(T) \) denotes the point spectrum of an operator \(T \)). If \(N(C) \cap N(B - \lambda) = \{0\} \), then

\[
\dim CN(B - \lambda) = \dim N(B - \lambda) = n(B - \lambda) > d(A - \lambda).
\]

Therefore, \(R(A - \lambda) \cap CN(B - \lambda) \neq \{0\} \). Take a nonzero vector \(y_1 \in R(A - \lambda) \cap CN(B - \lambda)\). Then there exist vectors \(y_2 \in H \) and \(z_2 \in K \) with \((A - \lambda)y_2 = y_1 = Cz_2\) and \(z_2 \in N(B - \lambda) \setminus \{0\}\) so that

\[
(M_C - \lambda)(y_2 - z_2) = (A - \lambda)y_2 - Cz_2 - (B - \lambda)z_2 = 0.
\]

Then \(\lambda \in \sigma_p(M_C) \subseteq \sigma(M_C)\).

In the second step we will show that the converse inclusion is also true.

If \(\lambda \in \bigcap_{C \in B(K, H)} \sigma(M_C) \), it means that, for any operator \(C \in B(K, H) \), \(\lambda \in \sigma(M_C) \). To complete the proof, it is sufficient to show that, if \(\lambda \notin \sigma_p(A) \cup \sigma(B) \) and \(d(A - \lambda) = n(B - \lambda) \), we may choose an operator \(C_0 \in B(K, H) \) such that \(\lambda \notin \sigma(M_{C_0}) \).

Since \(n(B - \lambda) = d(A - \lambda) \), there exist an orthonormal basis \(\{g_i\}_{i=1}^n \) of \(N(B - \lambda) \) and an orthonormal basis \(\{f_i\}_{i=1}^n \) of \(R(A - \lambda)^\perp \) (\(n \) is not necessarily finite). Define an operator \(C_0 \) from \(K \) into \(H \) by

\[
\begin{cases}
C_0g_i = f_i, & i = 1, 2, \ldots, n, \\
C_0g = 0, & g \in N(B - \lambda)^\perp (\subset K).
\end{cases}
\]

We shall prove \(\lambda \notin \sigma(M_{C_0}) \). To do this, we will prove that \(M_{C_0} \) is injective and surjective.

If there exists a vector \(x = y + z \), \(y \in H \) and \(z \in K \), with \((M_{C_0} - \lambda)x = (M_{C_0} - \lambda)(y + z) = 0\), then \(z \in N(B - \lambda) \) and \(C_0z = -(A - \lambda)y \). By the definition of \(C_0 \), \(C_0z \in R(A - \lambda)^\perp \); thus \(C_0z = 0 \). Moreover, since \(C_0 \) is injective on \(N(B - \lambda) \), we have \(z = 0 \). Therefore, \(A - \lambda)y = 0 \), but we assume that \(\lambda \notin \sigma_p(A) \). Hence \(y = 0 \), so \(M_{C_0} \) is injective.

Now we will show that \(M_{C_0} \) is surjective.

For any vector \(x_0 = y_0 + z_0 \), \(y_0 \in H \) and \(z_0 \in K \), since \(\lambda \notin \sigma_\delta(B - \lambda) \), it follows that \(R(B - \lambda) = K \). Then there must be a vector \(z_1 \in K \) such that \((B - \lambda)z_1 = z_0\). On the other hand, since \(\lambda \notin \sigma_\delta(A) \), \(R(A - \lambda) \) is closed. Thus \(R(A - \lambda) \oplus R(A - \lambda)^\perp = H \). Hence we can assume that \(y_0 = \xi_0 + \eta_0 \), where \(\xi_0 \in R(A - \lambda) \) and \(\eta_0 \in R(A - \lambda)^\perp \). So there exist vectors \(y_1 \in H \) and \(z_2 \in K \) such that \((A - \lambda)y_1 = \xi_0 \) and \(C_0z_1 + \eta_0 = -C_0z_2 \). Note that since \(C_0 \) is onto \(R(A - \lambda)^\perp \), the last equality is possible. Thus

\[
(M_{C_0} - \lambda)(y_1 + z_1 + z_2) = (A - \lambda)y_1 + C_0(z_1 + z_2) + (B - \lambda)(z_1 + z_2) = \xi_0 + \eta_0 + (B - \lambda)z_1 = y_0 + z_0 = x_0.
\]

Because \(x_0 \) is arbitrary, \(M_{C_0} - \lambda \) is surjective. The proof is complete.

A simple example will show that the inclusion \(\sigma(M_C) \subset \sigma(A) \cup \sigma(B) \) may be proper.
Example 3. If \(\{g_i\}_{i=1}^{\infty} \) is an orthonormal basis of \(K \), define an operator \(B_0 \) by
\[
\begin{align*}
B_0 g_1 &= 0, \\
B_0 g_i &= g_{i-1}, & i = 2, 3, \ldots.
\end{align*}
\]
If \(\{f_i\}_{i=1}^{\infty} \) is an orthonormal basis of \(H \), define an operator \(A_0 \) by \(A_0 f_i = f_{i+1} \), \(i = 1, 2, \ldots \), and an operator \(C_0 \) by \(C_0 = (\cdot, g_1)f_1 \) from \(K \) into \(H \). Then it is easy to see that \(\sigma(A_0) = \sigma(B_0) = \{ \lambda : |\lambda| \leq 1 \} \). But, in this case, \(M_{C_0} \) is a unitary operator, \(\sigma(M_{C_0}) \subseteq \{ \lambda : |\lambda| \leq 1 \} \), so the inclusion \(\sigma(M_{C_0}) \subseteq \sigma(A) \cup \sigma(B) \) is proper.

The above example is an affirmative answer to Question 1.

Here we need to point out that although the inclusion \(\sigma(M_C) \subseteq \sigma(A) \cup \sigma(B) \) may be proper, the spectral radius of \(M_C \) is always a constant which is independent of \(C \) and equal to \(\max \{ r_0(A), r_0(B) \} \), where \(r_0(T) \) denotes the spectral radius of an operator \(T \). This is the following proposition.

Proposition 4. For given operators \(A \) and \(B \), \(r_0(M_C) \) is a constant.

Proof. Note that since \(\sigma(A) \cup \sigma(B) \subseteq \sigma(M_C) \subseteq \sigma(A) \cup \sigma(B) \), Proposition 4 is clear.

At this point, one naturally asks which kinds of spectrums in \(\sigma(A) \) and \(\sigma(B) \) can be perturbed out by choosing a suitable operator \(C \in B(K, H) \). Now we shall answer this question.

Theorem 5. Assume that there exists an operator \(C \in B(K, H) \) such that the inclusion \(\sigma(M_C) \subseteq \sigma(A) \cup \sigma(B) \) is proper. Then for any \(\lambda \in (\sigma(A) \cup \sigma(B)) \setminus \sigma(M_C) \), we have \(\lambda \in \sigma(A) \cap \sigma(B) \), \(R(B - \lambda) = K \), \(R(A^* - \lambda) = H \), and \(n(B - \lambda) = d(A - \lambda) \).

Proof. The last part of the theorem was contained in Theorem 2, so we only need to prove that, for an operator \(C \in B(K, H) \), if \(\lambda \in (\sigma(A) \cup \sigma(B)) \setminus \sigma(M_C) \), then \(R(B - \lambda) = K \), \(R(A^* - \lambda) = H \), and \(\lambda \in \sigma(A) \cap \sigma(B) \).

Without loss of generality, assume that \(\lambda = 0 \). Then \(M_C = \begin{bmatrix} A & C \\ 0 & B \end{bmatrix} \) is invertible and it is clear that \(R(B) = K \) and \(R(A^*) = H \).

Next, we shall prove that \(0 \in \sigma(A) \cap \sigma(B) \). In the converse, assume that \(0 \in \sigma(A) \) but \(0 \notin \sigma(B) \). Since \(\sigma(A) \subseteq \sigma(M_C) \) (by Lemma 1), \(0 \notin \sigma(A) \). Consider the adjoint \(M_C^* \) of \(M_C \)
\[M_C^* = \begin{bmatrix} A^* & 0 \\ C^* & B^* \end{bmatrix} \]
Then \(N(A^*) \neq \{0\} \). Take a nonzero vector \(y \in N(A^*) \). Under the assumption \(0 \notin \sigma(B) \), since \(B^* \) is invertible, \(R(B^*) = K \), so we may find a vector \(z \in K \) with \(B^*z = -C*y \) (it is easy to see \(C \neq 0 \)). Therefore, we have
\[
M_C^* \begin{bmatrix} y \\ z \end{bmatrix} = \begin{bmatrix} A^* & 0 \\ C^* & B^* \end{bmatrix} \begin{bmatrix} y \\ z \end{bmatrix} = \begin{bmatrix} A^*y \\ C^*y + B^*z \end{bmatrix} = 0;
\]
that is, \(0 \in \sigma(M_C^*) \), i.e., \(0 \in \sigma(M_C) \). This contradicts the hypothesis. A similar argument will show that \(0 \in \sigma(B) \) and \(0 \notin \sigma(A) \) simultaneously holding is impossible too. The proof is finished.

Remark 6. By Theorem 5 and its proof, we see that the part of \(\sigma(A) \cup \sigma(B) \) perturbed out by choosing a suitable operator \(C \in B(K, H) \) is not only in the
intersection of $\sigma(A)$ and $\sigma(B)$ but also in the intersection of semi-Fredholm domains of A and B, whose index is not zero.

Using Theorem 5, we may immediately give an example that, for a given pair (A, B) of operators, $\sigma(M_C)$ is invariant for any $C \in B(K, H)$.

Example 7. If $A \in B(H)$ and $B \in B(K)$ are normal operators, then, for any $C \in B(K, H)$, $\sigma(M_C) = \sigma(A) \cup \sigma(B)$.

We need to point out that using results obtained in this note may lead to simpler proofs of propositions in [4]. In [4] some properties of the generalized deriviation were considered. Recall that the generalized derivation δ_{AB} induced by operators A and B is defined by

$$\delta_{AB} : X \rightarrow AX - XB, \quad X \in B(K, H).$$

We have the following inclusions:

$$\{C : C \in R(\delta_{AB})\} \subset \left\{ C : \begin{bmatrix} A & C \\ 0 & B \end{bmatrix} \sim \begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix} \right\} \subset \left\{ C : \sigma \left(\begin{bmatrix} A & C \\ 0 & B \end{bmatrix} \right) = \left(\begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix} \right) \right\}.$$

By the discussion in this note, we easily see that, in general, all of these inclusions are proper. Under which conditions with operators A and B will these inclusions instead be of equalities? The answer to this question is not clear now.

Finally, we turn to the so-called four block operator matrices. This subject was suggested by Professor C. Foias.

For an operator G_X defined on $H \oplus K$ by

$$(2) \quad G_X = \begin{bmatrix} A & C \\ X & B \end{bmatrix},$$

if operators A, B, and C are given and X is taken over $B(H, K)$, (2) is called a four block operator matrix. For the minimal norm of G_X we have known a famous theorem for a long time (see [2] and [3]).

Theorem P (Parott [5]). If given A, B, and C, then

$$\min \left\{ \left\| \begin{bmatrix} A & C \\ X & B \end{bmatrix} \right\|, \quad X \in B(H, K) \right\} = \max \left\{ \left\| (AC) \right\|, \quad \left\| C \right\|_B \right\}.$$

But, for spectrum of G_X, what can we say? As in Proposition 4, for 2×2 upper triangular operator matrices, when A and B are given, then $r_\sigma(M_C)$ is a constant. However, for four block operator matrices, when A, B, and C are given and $C \neq 0$, in general, the spectral radius $r_\sigma(G_X)$ of G_X may be large enough. We have

Theorem 8. For a four block operator matrix (2), if A, B, and C are given and $C \neq 0$, then, for any $\lambda \in \rho(A)$ ($\rho(A)$ is the resolvent of A), there exists a one-rank operator $X \in B(H, K)$ such that $\lambda \in \sigma_p(G_X)$.

Proof. Since $C \neq 0$, there exists a vector $x_2 \in K$ with $Cx_2 \neq 0$. By the assumption of $\lambda \in \rho(A)$ and by putting

$$x_1 = -(A - \lambda)^{-1}Cx_2,$$
considering the one-rank operator
\[X = \frac{1}{\| (A - \lambda)^{-1}Cx_2 \|^2} (\cdot, (A - \lambda)^{-1}Cx_2)(B - \lambda)x_2 \]
and letting \(x = -(A - \lambda)^{-1}Cx_2 + x_2 \), one obtains
\[
(Gx - \lambda)x = \left[\begin{array}{cc} A - \lambda & C \\ X & B - \lambda \end{array} \right] \begin{array}{c} x \\ A - \lambda \end{array} \frac{\| (A - \lambda)^{-1}Cx_2 \|^2}{\| (A - \lambda)^{-1}Cx_2 \|^2} (B - \lambda)x_2 \\
= \begin{array}{c} \frac{\| (A - \lambda)^{-1}Cx_2 \|^2}{\| (A - \lambda)^{-1}Cx_2 \|^2} (B - \lambda)x_2 \\ (A - \lambda)^{-1}Cx_2 \end{array} \end{array} = 0.
\]
So \(\lambda \in \sigma_p(G_X) \). The proof is completed.

ACKNOWLEDGMENTS

The first author wants to express his thanks to Professor C. Foias for his inspiring suggestion and to the Department of Mathematics of Indiana University at Bloomington for their hospitality.

REFERENCES

2. C. Foias, Commutant lifting techniques for computing optimal \(H^\infty \) controller, Indiana University at Bloomington, 1990.
3. C. Gu, On the four block problem and simultaneous \(H^\infty \) and \(L^2 \) suboptimization, preprint.

Department of Mathematics, Shaanxi Normal University, Xi'an 710062, People's Republic of China