The eigenvalue gap for one-dimensional convex potentials
HTML articles powered by AMS MathViewer
- by Richard Lavine
- Proc. Amer. Math. Soc. 121 (1994), 815-821
- DOI: https://doi.org/10.1090/S0002-9939-1994-1185270-4
- PDF | Request permission
Abstract:
For Schrödinger operators on an interval with convex potentials, the gap between the two lowest eigenvalues is minimized when the potential is constant.References
- Mark S. Ashbaugh and Rafael Benguria, Optimal lower bound for the gap between the first two eigenvalues of one-dimensional Schrödinger operators with symmetric single-well potentials, Proc. Amer. Math. Soc. 105 (1989), no. 2, 419–424. MR 942630, DOI 10.1090/S0002-9939-1989-0942630-X
- M. S. Ashbaugh and R. Benguria, Optimal lower bounds for eigenvalue gaps for Schrödinger operators with symmetric single-well potentials and related results, Maximum principles and eigenvalue problems in partial differential equations (Knoxville, TN, 1987) Pitman Res. Notes Math. Ser., vol. 175, Longman Sci. Tech., Harlow, 1988, pp. 134–145. MR 963464
- Richard B. Lavine, Absolute continuity of Hamiltonian operators with repulsive potential, Proc. Amer. Math. Soc. 22 (1969), 55–60. MR 247529, DOI 10.1090/S0002-9939-1969-0247529-X
- Michael Reed and Barry Simon, Methods of modern mathematical physics. I, 2nd ed., Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1980. Functional analysis. MR 751959
- I. M. Singer, Bun Wong, Shing-Tung Yau, and Stephen S.-T. Yau, An estimate of the gap of the first two eigenvalues in the Schrödinger operator, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 12 (1985), no. 2, 319–333. MR 829055
- Qi Huang Yu and Jia Qing Zhong, Lower bounds of the gap between the first and second eigenvalues of the Schrödinger operator, Trans. Amer. Math. Soc. 294 (1986), no. 1, 341–349. MR 819952, DOI 10.1090/S0002-9947-1986-0819952-8
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 121 (1994), 815-821
- MSC: Primary 35P15; Secondary 34L40, 35J10, 81Q10
- DOI: https://doi.org/10.1090/S0002-9939-1994-1185270-4
- MathSciNet review: 1185270