On the cohomology of split extensions
HTML articles powered by AMS MathViewer
- by D. J. Benson and M. Feshbach
- Proc. Amer. Math. Soc. 121 (1994), 687-690
- DOI: https://doi.org/10.1090/S0002-9939-1994-1186129-9
- PDF | Request permission
Abstract:
We construct, for each value of n, a split extension of finite 2-groups, with complement isomorphic to Z/2 , for which the differential ${d_n}$ is nonzero in the Lyndon-Hochschild-Serre spectral sequence.References
- George S. Avrunin and Jon F. Carlson, Nilpotency degree of cohomology rings in characteristic two, Proc. Amer. Math. Soc. 118 (1993), no. 2, 339–343. MR 1129871, DOI 10.1090/S0002-9939-1993-1129871-7
- D. J. Benson, Representations and cohomology. II, Cambridge Studies in Advanced Mathematics, vol. 31, Cambridge University Press, Cambridge, 1991. Cohomology of groups and modules. MR 1156302
- Mark Feshbach, The image of $H^{\ast } (BG,\,\textbf {Z})$ in $H^{\ast } (BT,\,\textbf {Z})$ for $G$ a compact Lie group with maximal torus $T$, Topology 20 (1981), no. 1, 93–95. MR 592571, DOI 10.1016/0040-9383(81)90015-X
- Daniel Quillen, The spectrum of an equivariant cohomology ring. I, II, Ann. of Math. (2) 94 (1971), 549–572; ibid. (2) 94 (1971), 573–602. MR 298694, DOI 10.2307/1970770
- Oscar Zariski and Pierre Samuel, Commutative algebra. Vol. II, Graduate Texts in Mathematics, Vol. 29, Springer-Verlag, New York-Heidelberg, 1975. Reprint of the 1960 edition. MR 0389876
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 121 (1994), 687-690
- MSC: Primary 20J06
- DOI: https://doi.org/10.1090/S0002-9939-1994-1186129-9
- MathSciNet review: 1186129