Equivariant maps for homology representations
HTML articles powered by AMS MathViewer
- by Ronald M. Dotzel
- Proc. Amer. Math. Soc. 121 (1994), 961-965
- DOI: https://doi.org/10.1090/S0002-9939-1994-1186130-5
- PDF | Request permission
Abstract:
If Y is a homotopy representation of the finite group G of order n and X is a finite G-CW complex such that, for each subgroup H of G, ${H_ \ast }({X^H};{\mathbb {Z}_n}) = {H_ \ast }({Y^H};{\mathbb {Z}_n})$ then there exists a G-map $f:X \to Y$ such that $f_ \ast ^H:{H_ \ast }({X^H};{\mathbb {Z}_n}) \to {H_ \ast }({Y^H};{\mathbb {Z}_n})$ is an isomorphism for each subgroup H.References
- Glen E. Bredon, Equivariant cohomology theories, Lecture Notes in Mathematics, No. 34, Springer-Verlag, Berlin-New York, 1967. MR 0214062
- Henri Cartan and Samuel Eilenberg, Homological algebra, Princeton University Press, Princeton, N. J., 1956. MR 0077480
- Tammo tom Dieck, Transformation groups, De Gruyter Studies in Mathematics, vol. 8, Walter de Gruyter & Co., Berlin, 1987. MR 889050, DOI 10.1515/9783110858372.312
- Tammo tom Dieck, Transformation groups and representation theory, Lecture Notes in Mathematics, vol. 766, Springer, Berlin, 1979. MR 551743
- Tammo tom Dieck, Geometric representation theory of compact Lie groups, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986) Amer. Math. Soc., Providence, RI, 1987, pp. 615–622. MR 934263
- Tammo tom Dieck, Homotopiedarstellungen endlicher Gruppen: Dimensionsfunktionen, Invent. Math. 67 (1982), no. 2, 231–252 (German). MR 665155, DOI 10.1007/BF01393816
- Ronald M. Dotzel and Gary C. Hamrick, $p$-group actions on homology spheres, Invent. Math. 62 (1981), no. 3, 437–442. MR 604837, DOI 10.1007/BF01394253
- Dock Sang Rim, Modules over finite groups, Ann. of Math. (2) 69 (1959), 700–712. MR 104721, DOI 10.2307/1970033
- George W. Whitehead, Elements of homotopy theory, Graduate Texts in Mathematics, vol. 61, Springer-Verlag, New York-Berlin, 1978. MR 516508
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 121 (1994), 961-965
- MSC: Primary 57S17; Secondary 55N91
- DOI: https://doi.org/10.1090/S0002-9939-1994-1186130-5
- MathSciNet review: 1186130