The Takaga operator, Bernoulli sequences, smoothness conditions and fractal curves
HTML articles powered by AMS MathViewer
- by Anca Deliu and Peter Wingren
- Proc. Amer. Math. Soc. 121 (1994), 871-881
- DOI: https://doi.org/10.1090/S0002-9939-1994-1196164-2
- PDF | Request permission
Abstract:
We map Lipschitz spaces and functions of bounded variation by the operator $\sigma :\varphi (x) \to \sum \nolimits _0^\infty {{2^{ - n}}} \varphi ({2^n}x),x \in [0,1]$, and we estimate the Hausdorff measure of $\sigma (\varphi )$. We furthermore introduce a class of continuous and nowhere differentiable functions on [0,1] which we call $\mathcal {T}$. We make a refined analysis of the fractal and smoothness properties of the functions in $\mathcal {T}$ and study the relationship between the two. We show that all the functions in $\mathcal {T}$ have box dimension equal to $\frac {1}{2}$, with respect to the dimension family $\{ t/{(\log \frac {1}{t})^s}:s \in {\mathbb {R}^ + }\}$, but that their order of smoothness covers a wide range.References
- O. V. Besov, V. P. Il’in, and S. M. Nikol’skii, Integral representations of functions and imbedding theorems, Wiley, New York, 1978.
- K. J. Falconer, The geometry of fractal sets, Cambridge Tracts in Mathematics, vol. 85, Cambridge University Press, Cambridge, 1986. MR 867284
- Kenneth Falconer, Fractal geometry, John Wiley & Sons, Ltd., Chichester, 1990. Mathematical foundations and applications. MR 1102677 R. Häggvist, Personal communication.
- Masayoshi Hata, Topological aspects of self-similar sets and singular functions, Fractal geometry and analysis (Montreal, PQ, 1989) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 346, Kluwer Acad. Publ., Dordrecht, 1991, pp. 255–276. MR 1140724 E. W. Hobson, The theory of functions of a real variable, Dover, New York, 1957.
- Alf Jonsson and Hans Wallin, Function spaces on subsets of $\textbf {R}^n$, Math. Rep. 2 (1984), no. 1, xiv+221. MR 820626
- James L. Kaplan, John Mallet-Paret, and James A. Yorke, The Lyapunov dimension of a nowhere differentiable attracting torus, Ergodic Theory Dynam. Systems 4 (1984), no. 2, 261–281. MR 766105, DOI 10.1017/S0143385700002431
- Konrad Knopp, Ein einfaches Verfahren zur Bildüng stetiger nirgends differenzierbarer Funktionen, Math. Z. 2 (1918), no. 1-2, 1–26 (German). MR 1544308, DOI 10.1007/BF01212897
- R. Daniel Mauldin and S. C. Williams, On the Hausdorff dimension of some graphs, Trans. Amer. Math. Soc. 298 (1986), no. 2, 793–803. MR 860394, DOI 10.1090/S0002-9947-1986-0860394-7
- Benoit B. Mandelbrot, Fractals: form, chance, and dimension, Revised edition, W. H. Freeman and Co., San Francisco, Calif., 1977. Translated from the French. MR 0471493
- G. de Rham, Sur un exemple de fonction continue sans dérivée, Enseign. Math. (2) 3 (1957), 71–72 (French). MR 85314
- C. A. Rogers, Hausdorff measures, Cambridge University Press, London-New York, 1970. MR 0281862
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095 T. Takaga, A simple example of a continuous function without derivative, Proc. Phys. Math. Soc. Japan 1 (1903), 176-177.
- B. L. van der Waerden, Ein einfaches Beispiel einer nicht-differenzierbaren stetigen Funktion, Math. Z. 32 (1930), no. 1, 474–475 (German). MR 1545179, DOI 10.1007/BF01194647 K. Weierstrass, Mathematische Werke, Mayer and Müller, Berlin, 1894-1927. P. Wingren, Imbeddings and characterizations of Lipschitz spaces on closed sets, Department of Mathematics, University of Umeå5 (1985).
- A. Zygmund, Trigonometric series. 2nd ed. Vols. I, II, Cambridge University Press, New York, 1959. MR 0107776
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 121 (1994), 871-881
- MSC: Primary 28A80
- DOI: https://doi.org/10.1090/S0002-9939-1994-1196164-2
- MathSciNet review: 1196164