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COMPARISONS OF LOGNORMAL POPULATION MEANS

HANFENG CHEN

(Communicated by Wei-Yin Loh)

Abstract. Comparisons of two lognormal population means are investigated.

For large samples, the conventional test for significance of the population means

is the ordinary Student /-test with normal critical value. By Chen and Loh's

result (Ann. Statist. 20 (1992)), however, the transformed i-test based on leg-

data is asymptotically more powerful than the ordinary i-test. In this paper, a

new power transformation (hence a new transformed /-test) is proposed. The

new transformed /-test is proven to be asymptotically more powerful than the

one based on log-data. Both small sample and large sample properties of the

proposed estimate for the power-transformation parameter are studied. A sim-

ulation study shows that the advantages of the new test over the /-test based on

log-data are overwhelming and evident for sizes of the two samples as small as

20 and 30, or even 10 and 15. The simulation results also show that the new

test has greater asymptotic power than Rao's efficient score test.

1. Introduction

The lognormal model has been widely used to fit skewed positive data, such

as the sizes of organisms and the numbers of species in biology, the rainfalls

in meteorology, the sizes of incomes in economics, and so on (see Crow and

Shimizu [6, Chapters 9-14]). By a direct definition, a positive random vari-

able X is said to be lognormally distributed if logX is normally distributed
with mean p and variance o2. The lognormal distribution is then denoted by
A(p, a2). This is the so-called two-parameter definition of the lognormal dis-

tribution. The distribution of X is thus fully specified by the two parameters
p and a2, and this seems to be the simplest natural specification, as Aitchison
and Brown [2] commented. By this definition, the mean v and variance t2 of

X are given by

(1) v = exp(p + o2/2)   and   t2 = exp(2/¿ + o-2){exp(<72) - 1}.

The density f(x) of X takes the form

(2) f(x) = (2k)-xI2(xo)-x exp{-(l0g2g"/)2} >       x > °-
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In the paper, we consider the two-sample problem with a law of error follow-

ing the lognormal distribution. Let Xx, ... , Xm be a sample of size m from

A(px, a2), and Yx, ... , Y„ a sample of size « from A(p2, a\). Let vx and

t2 be the mean and variance of the X-population, and similarly, v2 and t2 the

mean and variance of the F-population. Relations between p¡, a2 and v¡, r2

are given by (1). By the two-sample problem, it is assumed that tx = x2 . We
desire to test

(3) Ho: vx = v2   versus   Hx:vx± v2.

First, it may be noted that the difference between the two-sample and the

one-sample problem in which only a single lognormal population involved is es-

sential. With the aid of the best-developed normal theory, research results on the

one-sample problem have been rich and mature (see Land [9] and the references
therein). Nevertheless, when two (or more than two) lognormal populations are

involved, the normal theory is of no help for the problem, for the difference of

lognormal means, which is the quantity of interest, is no longer a linear func-

tion of the corresponding normal parameters so that standard procedures fail to

apply. As usual, we thus turn to an asymptotic analysis. Throughout the paper,

therefore, it is assumed that m —> oo and «-»oc with m/N —► k £ (0, 1),

where N = m + n is the grant sample size.

The conventional test for Ho is the Student f-test

T = (mn/N)XI2(Y-X)/S,

where Y and X are the sample means, and S the pooled sample standard

deviation. Under null hypothesis Ho, the limit distribution of T is standard

normal. Recently, Chen and Loh [5] argued that the Box-Cox r-test T(0) should

be used instead of the Student i-test. Here T(X) is the transformed i-test
defined by

(4) T(X) = (mn/N)xl2{Y(X) - X(X)}/S(X),

where Y(X), X(X), and S(X) are the sample means and pooled standard devia-

tion of the transformed data through the Box-Cox (Box and Cox [3]) power

transformation h(x, X) = (xx - l)/X if x ^ 0, and log(x) otherwise (so

Y(X) = n~x \^h(Yi, X), for example), and 0 is the Box-Cox estimate for X

(also called the maximum likelihood estimate) chosen to minimize the function

L(X) = S2(X)/e\p[2XN-x{mX(0) + nY(0)}].

(The notation 0 is employed here to indicate the fact that 0 « 0 for the

present problem.) Chen and Loh [5] proved that the Box-Cox transformed t-

test is asymptotically more efficient than the Student /-test; for the lognormal

model in particular, testing power gained through the transformation h(x, 0)

is remarkable (Table 3 there). However, it can be noted that the estimating

function L(X) (hence the estimate for X and the induced test) does not use

knowledge of the lognormal model assumption. In fact, the test is designed
essentially as a nonparametric procedure. Therefore the Box-Cox transformed

Mest may still be very far from the best.

In the present paper, we propose a new estimate for X, denoted by X, and

hence a new transformed f-test  T(X) for H0.   The basic idea is to choose
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X such that the asymptotic efficacy of T(X) is maximized among all possible

power transformations. The new test is then expected to be more powerful than

the Box-Cox /-test or the ordinary Student i-test. To motivate this, consider
Pitman-type alternatives as follows:

(5) HxN:u2 = ux+cN~xl2.

Let X be fixed temporarily. Under the alternatives, it can be seen that the

asymptotic efficacy of T(X) is proportional to

(a ntn     ¡^^{a2(l-2X)}/{exp(X2o2)-l}   ifA^O,
(6) {¿(X) = <     _. -

t a ¿exp(a¿/2) if X = 0.

Here a2 is the common variance of log(^T) and log(F) populations under the

null hypothesis H0, and it can be replaced by the estimator d2 — S2(0), the

pooled sample variance of transformed data by logarithm. The function Q(X)

after substitution is denoted by Q(X) ; i.e.,

QW ilA2exp{rj2(l-2A)}/{exp(/l2f>2)-l}   ifA^O,

2exp(r>2/2) if A = 0.

Definition 1. The estimate X is the maximizer of Q(X).

With the estimate X, the test for //0 is to reject H0 if |T(X)\ > za , where

za is the upper (50a)th percentile of standard normal distribution.

Section 2 discusses the small sample and large sample properties of X. Lower

and upper bounds on X are provided. It is proven that under the null hypothe-

sis, X converges almost surely to a limit Xo and NxI2(X-Xq) has normal limit

distribution. Section 3 considers the asymptotic null and alternative distribu-
tions of the new test. It is then shown that the new transformed i-test is more

powerful than the Box-Cox transformed i-test, and hence than the ordinary

i-test, as expected. Section 4 reports a simulation study with discussion. Since

the lognormal model is parametric, it would be desirable to compare T(X) with
certain popular parametric test. In §4, Rao's efficient score test as a parametric
testing procedure is included in the simulation study.

All proofs for the results in the paper are put in Appendix A.

2. Properties of the estimate X

It can be noted that finding X needs numerical computation. The following

lemma ensures X 's existence and uniqueness.

Lemma 1. For ô > 0, Q(X) is log concave downward on (-00, oo).

Figure 1 displays a nice concave downward graph of q(X) = logQ(-i.) with
ô=l. Noting that q(-oc) = q(oo) = -oo and using the lemma yield the

following corollary.
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Figure 1.  The graph of log Q(X) with à = 1.   A is
found to be -1.49.

Corollary 1. For all observations with ô>0, Q(X) has only one local maximum

which also serves as the globe maximum over (-00, oo).

The corollary above has practical as well as theoretic value in finding A. For

instance, one can first try an initial interval of X. If the maximizer of Q(X) on

the interval happens to be an interior point of the interval, terminate and the

maximizer is exactly the X ; otherwise the maximizer can be an indicator with

which the direction of next try is advised. A further study gives the idea how

to choose an interval smartly. The derivative of q(X) is given by

,     = 2/ A_1 " Öl ~ ^2^v(^2à2)/{exp(X2d2) - 1}   if X * 0,

9 \-d2 if A = 0.

Setting q(X) = 0 and letting x = Xd, we have the estimating equation

(7) e\p(x2) = (ôx-l)/(x2 + ôx-l),        x¿0.

Equation (7) has a unique root from Corollary 1. To see where the root could

be, consider the function of the rhs of (7). It has a horizontal asymptote at

y = 0, and two vertical asymptotes at x = xx and x2, respectively, where

xx = -(<7/2){l + (1 + 4/â2)1/2} < 0,        x2 = -(â/2){l - (1 + 4/â2)1/2} > 0.

First note that the unique root of (7) must be greater than xx since the rhs of

(7) is negative for x < xx . Next, it is easy to see that the root cannot be positive

since the function t(x) = (x2+ôx-l)exp(x2)-(ôx-l) is positive for all x > 0

by observing that i(0) = 0 and t'(x) = (2x3-l-2âx2)exp(x2)-l-â{l-exp(x2)} >

0 for x > 0. Therefore the unique root of (7) must be between xx and 0.

This has established the following.

Theorem 1. For d2>0, -{I + (l+4/ô2)~x/2}/2 < X <0.

The lower bound is sharp enough in a sense of numerical computation. For

example, when r>2 is even as small as 0.1, the lower bound is -3.7 so that

one only needs to search interval (-3.7, 0) for X. Table 1 shows us that the
actual values are usually between -2 and -1.

Table 1. Numerical results of Xq for some values of o

0.4     0.6     O.i 1.0      1.2      1.4      1.6      1.8     2.0

—Xr\ 1.84    1.71    1.59    1.49    1.41    1.34    1.28    1.24    1.20
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Theorem 2. Under null hypothesis Ho, we have

(a) X —► Xo almost surely, where Xo is the maximizer of Q(X), and

(b) in distribution, NX/2(X - X0) -* N(0, y2), where

2 = 2,4_4 Í     (Xo+l)exp(2X2ci2) + (Xlcj2-Xo-2)exp(X2o2)+l     V

1 °    \(X2o2 + l)exp(2X2o2)-(2X^ + X2a2 + 2)exp(X\a2) + l] '

The numerical solution of X may be obtained in reality by specifying an
interval appropriately, say [-B, 0], where B is a positive constant. Theorem 1

suggests B does not need to be large. From our experience of Monte Carlo trials

and Table 1, B = 4 is large enough. On the other hand, the theoretic framework

can go with this reality. To be general, we assume B can be any positive

constant or oo. When B = oo, it simply gives the unrestriction procedure.

Let X* be the output of numerical computation. Since Q(X) is logconcave

downward, we have X* = max{Â, -B). Let Xq = max{/lo, -B} .

Corollary 2. Under null hypothesis Ho, we have

(a) X* -> X*0 almost surely, and

(b) NXI2(X* - Xq) is bounded in probability

From now on, we use X* instead of X since X* is more general.

3. Null distribution and testing power

In this section, we study the asymptotic null and alternative distributions of

T(X*). The following useful lemma was obtained by Doksum and Wong [7]

and Carroll [4].

Lemma 2. Under null hypothesis Ho, T(X*) - T(Xq') = Op(l).

By this lemma, we immediately have

Corollary 3. Under null hypothesis Ho,  T(X* ) has limit distribution N(0, 1 ).

Theorem 3. Under alternative   HXN,    T(X*)   has normal limit distribution

N(t;x ,1), where t\\ = c\k(l - k)]2Q(X*0).

We know that under HXN, the Box-Cox transformed i-test T(0) has limit

N(Ç2, 1) (Chen and Loh [5]), where £2 = c2[k(l - k)]2Q(0). Therefore, we

have that the Pitman asymptotic relative efficiency of T(X*) against T(0) is

Pñ* m-g(^-(72^2exp((72/2~2^g2)

e[Á 'Uj     0(0) exp(o2Xf)-l       ■

By Lemma 1 and Theorem 1, we have

Theorem 4. The test T(X*) is asymptotically more powerful than T(0), i.e.,

e(X*, 0) > 1.

The inequality in the theorem is actually very conservative and the values

of the asymptotic relative efficiency may be much larger than 1. For example,

when a = 0.4, e(X*, Ô) = 7.131 ; when a= 1.0, e(X* ,0) = 101.9.
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4. Monte Carlo study and discussion

A simulation study was carried out to assess the small sample performance of

the transformed i-test T(X*), comparing to the test T(0). In addition, since

the lognormal is a parametric model, we include Rao's efficient score test R

(Rao [11, p. 418]) for comparison. The test R is described in Appendix B.
The simulation results reported here are for the 135 combinations of:

1. Ten values of o— 0.4 (0.2) 2.0.
2. Three sets of sample sizes (m,n)— (10, 15), (20, 30), and (50,70).
3. Five different location shifts including zero shift (null hypothesis)—

0,0.10, 0.15, 0.20, and 0.25.

In all combinations, the nominal testing power a was 5% and B was 4 in

defining X*. As a matter of fact, X* = -B never happened in the simulation,

though. For each combination, 40,000 Monte Carlo trials were performed so
that two times the estimated maximum standard error of the simulation is 0.005.

All data sets were generated through use of the RNLNL routine in Version 1.1

of the October 1987 IMSL library and the simulation was done on the Cray

supercomputer at Columbus, Ohio. Table 2 contains the results for the case

m = l0,n= 15, Table 3 for m = 20, « = 30, and Table 4 for m = 50, « =
70. Some findings may be summarized as follows.

Table 2. Monte Carlo simulated rejection rate estimates for

tests T(X*), T(0), and Rao's efficient score test R with sample

sizes m = 10 and « = 15. The nominal level for all tests was

0.05, and 40,000 Monte Carlo trials were performed, giving a

maximum simulation standard error of 0.0025. The same sim-

ulated data were used to obtain the level and power of the tests.

Average values of X 's in simulation are given in parentheses.

shift test 0.4 0.6 0.8 1.0

a

1.2 1.4 1.6 1.8 2.0

.00
T(0)

R

T(X')

(-EX')

.066

.059

.055

(1-84)

.067

.063

.050

(1-71)

.066

.065

.043

(1-59)

.064

.064

.038

(1-49)

.066

.066

.032

(1-41)

.065

.062

.029

(1-35)

.066

.061

.027

(1-29)

.066

.059

.025

(1-25)

.068

.058

.024

(1-21)

.10
T(0)

R

T(Â-)

(-EX')

.122

.139

.130

(1.85)

.099

.115

.101

(1-74)

.089

.108

.085

(1-63)

.086

.104

.080

(1-53)

.083

.096

.074

(1.45)

.084

.097

.076

(1.39)

.085

.095

.081

(1-34)

.090

.096

.087

(1-29)

.091

.097

.088

(1.25)

.15

T(0)
R

T(X')

(-EX')

.193

.227

.216

(1-86)

.134

.169

.148

(1-74)

.117

.152

.126

(1.64)

.106

.138

.114

(1-54)

.102

.133

.109

(1-47)

.103

.130

.112

(1-40)

.105

.132

.116

(1-35)

.110

.129

.121

(1-30)

.109

.131

.121

(1-26)

.20
r(o)

R

T(X')

(-EX')

.283

.343

.322

(1-86)

.184

.240

.212

(1-75)

.144

.210

.172

(1-65)

.133

.189

.154

(1-55)

.132

.182

.151

(1-48)

.125

.174

.146

(1-41)

.126

.171

.149

(1-37)

.128

.170

.155

(131)

.130

.169

.154

(1-27)

.25
T(0)

R
T(X')

(-EX')

.390

.475

.448

(1-87)

.245

.333

.294

(1-76)

.185

.280

.227

(1-65)

.168

.252

.206

(1-56)

.156

.232

.193

(1-49)

.151

.222

.190

(1-42)

.146

.218

.185

(1-36)

.148

.213

.188

(1-32)

.150

.208

.186

(1-28)
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Table 3. Monte Carlo simulated rejection rate estimates for

tests T(X*), T(0), and Rao's efficient score test R with sample

sizes m = 20 and « = 30. The nominal level for all tests was

0.05, and 40,000 Monte Carlo trials were preformed, giving a
maximum simulation standard error of 0.0025. The same sim-

ulated data were used to obtain the level and power of the tests.

Average values of X 's in simulation are given in parentheses.

shift test 0.4 0.6 0.8 1.0
a

1.2 1.4 1.6 1.8 2.0

.00

T(0)
R

T(X')

(-EX')

.055

.061

.050

(1-84)

.056

.066

.047

(1-71)

.058

.066

.041

(1-59)

.057

.063

.035

(1-49)

.059

.064

.032

(1-41)

.056

.063

.030

(1-35)

.058

.060

.027

(1-29)

.057

.060

.025

(1-25)

.059

.059

.024

(1-21)

.10
T(0)

R
T(X')

(-EX')

.169

.213

.201

(1-85)

.117

.163

.145

(1-73)

.100

.150

.129

(1-62)

.096

.143

.126

(1-53)

.095

.139

.134

(1-45)

.093

.141

.144

(1-38)

.099

.140

.159

(1-33)

.100

.143

.171

(1-28)

.108

.149

.195

(1-25)

.15

T(0)
R

T(X")

(-EX')

.300

.386

.368

(1-86)

.188

.282

.258

(1-74)

.151

.241

.225

(1-63)

.139

.225

.214

(1-54)

.131

.220

.218

(1-46)

.129

.213

.232

(1-40)

.129

.215

.247

(1-34)

.132

.215

.260

(1-29)

.134

.216

.271

(1-26)

.20
T(0)
R

T(X')

(-EX')

.473

.576

.569

(1-86)

.282

.423

.392

(1-75)

.218

.358

.335

(1-64)

.191

.325

.316

(1-55)

.179

.312

.318

(1-47)

.169

.303

.319

(1-40)

.172

.299

.332

(1-35)

.179

.294

.342

(1-30)

.179

.295

.341

(1-26)

.25
T(0)

R
T('X')

(-EX')

.634

.755

.741

(1-87)

.392

.570

.541

(1-76)

.292

.484

.457

(1-65)

.252

.444

.425

(1.56)

.226

.412

.408

(1-48)

.216

.398

.408

(1.41)

.217

.386

.405

(1-36)

.218

.375

.403

(1-31)

.217

.367

.398

(1-27)

Testing power. The estimation method X* is proposed for the transformed

i-test by a power-transformation to gain testing power as much as possible. The
simulating results indeed support the faith. When sample sizes are as small as

m = 20 and m = 30, even as m = 10 and 15, the testing power of T(X*)

is overwhelmingly greater than that of T(0). When the sample sizes are large

like (50, 70), T(X*) has greater power than Rao's efficient score test R within

the parameter combinations considered. Comparing the results for the sample

sizes (10, 15), (20, 30), and (50, 70), one can see that the power of T(X*)

approaches 1 faster than that of R, which leads us to conclude that T(X) has
bigger asymptotic power than R.

Significance level. The small sample significance level of T(X*) is lower

than the nominal one, especially for a > 1, while those of T(0) and R are

higher. This, together with the comment above on testing power, appears to

conclude that T(X*) has better small sample performance than T(0) does. But

the accuracy for T(X*) 's distribution to be approximated by N(0, 1) strongly
depends on a's values.

Convergence of X. Comparing Table 1 with the simulating results, we see

that X approaches Xq very fast. When m = 10 and « = 15, margin of the

estimation error is already within 0.01 on average under null hypothesis. And

the effect of location-shift on the estimation seems to be slight.
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Table 4. Monte Carlo simulated rejection rate estimates for

tests T(X*), T(0), and Rao's efficient score test R with sample

sizes m = 50 and « = 70. The nominal level for all tests was

0.05, and 40,000 Monte Carlo trials were performed, giving a
maximum simulation standard error of 0.0025. The same sim-

ulated data were used to obtain the level and power of the tests.

Average values of X 's in simulation are given in parentheses.

shift test 0.4 0.6 0.8 1.0

a

1.2 1.4 1.6 1.8 2.0

.00
r(o)

R

T('X')

(-EX')

.054

.063

.050

(1-84)

.054

.067

.047

(1-71)

.054

.066

.041

(1-59)

.055

.066

.040

(1-49)

.052

.064

.034

(1.41)

.054

.059

.030

(1-34)

.052

.061

.028

(1-29)

.053

.057

.026

(1-24)

.053

.057

.024

(1-21)

.10
no)

R

T('X')

('EX')

.313

.413

.399

(1-85)

.191

.307

.291

(1-73)

.153

.266

.274

(1.62)

.141

.253

.291

(1.52)

.139

.256

.324

(1-44)

.138

.255

.374

(1-38)

.143

.265

.420

(1-32)

.155

.280

.463

(1-28)

.167

.288

.492

(1.24)

.15

T(0)

R

T('X')

(-EX")

.589

.713

.713

(1-86)

.361

.541

.550

(1.74)

.273

.472

.509

(1.63)

.239

.440

.513

(1.54)

.225

.432

.544

(1-46)

.224

.431

.575

(1-39)

.229

.437

.598

(1-34)

.239

.440

.617

(1.29)

.252

.449

.609

(1.25)

.20

T(0)

R

T('X')

(-EX')

.817

.912

.912

(1-86)

.555

.763

.775

(1.75)

.421

.674

.715

(1.64)

.359

.633

.706

(1.54)

.335

.616

.707

(1.47)

.323

.604

.710

(1.40)

.321

.600

.703

(1.34)

.333

.596

.690

(1.30)

.342

.599

.666

(1.26)

.25

r(o)
R

T('X')

(-EX'

.944

.982

.983

(1.87)

.727

.906

.910

(1.75)

.572

.834

.857

(1.65)

.488

.792

.825

(1.55)

.448

.763

.803

(1-47)

.432

.750

.784

(1-41)

.420

.738

.759

(1-35)

.419

.726

.728

(1.30)

.428

.719

.700

(1-26)

8i(x)

Appendix A: Proofs

Proof of Lemma 1. It suffices to verify that the second derivative q"(X) of

q(X) = logQ(X) is negative at all X. For convenience, let gx(x) = q"(x/a). It

can be seen that

-2d2\x-2 + {1 - (1 + 2x2)exp(-x2)}/{l - exp(-x2)}2]   if x ¿ 0,

_-ô2   ifjc = 0.

Then gx(x) is negative on (-00, oo) if and only if g2(x) = {1 - exp(-x)}2 +

x{l - exp(-x) - 2xexp(-x)} is positive on (0, oo). Again g2(x) > 0 for all

x > 0 if and only if gs(x) = (1 + x) exp(x) + exp(-x) - 2x2 -x-2 is positive

for all x > 0. To prove the latter statement, study the first three derivatives of

gs(x) given by the following:

g'3{x) = (2 + x) exp(x) - exp(-x) - 4x - 1,

£3 (*) = (3 + x) exp(x) + exp(-x) - 4,

g'i'(x) = (4 + x) exp(x) - exp(-x).

It is clear that g'{(x) > 0 for x > 0. Noting #"(0) = #'(0) = £(0) = 0, we
see that g'3"(x) > 0 for x > 0 implies g$(x) > 0 for x > 0 which in turn

implies g'3(x) > 0 for x > 0 and hence g(x) > 0 for all x > 0, completing

the proof.   D
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Proof of Theorem 2. Part (a) is immediate from Lemma 1 and Corollary 1,

and Corollary II.2 of Andersen and Gill [1]. To prove (b), applying the Taylor

expansion to function Q obtains: 0 = Q'(X) = Q'(X0) + Q"(£)(X - X0) where ¿¡

is between X and Xo . Thus

NX'2(X- Xo) = -Nxl2Q'(Xo)/Q!'(i).

Now consider Q'(X0) as a function of à2, denoted by g(d2). Noting that

g(a2) = Q'(Xo) = 0 and in distribution Nxl2(d2 - a2) -» N(0, 2o4), using

the delta-method yields that in distribution NX/2Q'(X0) -» N(0, 2o4g'2(o2)).

It is clear that with probability one Q"(¿1) -> Q"(Xo). Finally, it follows that

NXI2(X - Xo) -* N(0, y2) with y2 = 2o4g'2(o2)/Q"2(X0). The proof of part (b)
is then completed by calculating g' and Q" .   D

Proof of Corollary 2. If X0 > -B, then X*0 = X0 so that \X* - A0| <\X- X0\. If

X0< -B, then X*Q = -B so that |Â*-Aq| = |max{l, -B} + B\ < |Â-Ao|, since

| max{Â, -B} + B\ = 0 if X < -B . By Theorem 2, the proof is completed.   D

Proof of Theorem 3. The basic idea is to use Lemma 2 and LeCam's third lemma

(LeCam and Young [10]). Let

/JV = ¿log{/(F,-ciV-1/2)//(ri)},

(=1

where / is given by (2). By the LeCam's third lemma, it suffices to prove

that under the null hypothesis, {T(X*), /#} is asymptotically jointly bivariate

normal (0i, d2, a\, a\, ax2) with 92 = -a\/2, 6X + ox2 = Çx, and a2 = I.

Under the null hypothesis, by Lemma 2, T(X*) - T(Xq) = op(l) so that, instead

of {T(X*), lN}, we only need to deal with {T(Xq), lN}, more simply with

(ZN, In) , where

ZN = (mn/N)xl2{Y(Xl) - X(X*0)}/S,

and <52 is the variance of h(Xx, Xq) under the null hypothesis. The remaining

of the proof is the same as the treatment in Chapter VI.2 of Hájek and Sidák

[8].   D

Appendix B: Rao's efficient test R

Under the null-hypothesis, both log X and log Y are identically and nor-

mally distributed, say N(p, a2). Let âr2 and /¿o be the maximum likelilhood

estimators for p and a2 under the null-hypothesis. Let Oo = exp(po + Ôq/2)

and Tq = exp(2ßo + a02){exp((Tf2) - 1}. Then it can be seen that Rao's efficient

scores 0,- are as follows: with n = 2a,02(To + vo)Nxl2 ,

{m m \

mío - to ]£(logXi)2 + cto(2t0 + î>o) 5Zloèxi \ »
¡=1 ¡=1 J
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«

4>2 = %   ' I «To - í0 ^(log Yj)2 + <7o(2t0 + i>o)

7=1

m n

¿logF7|,

03 = Ä-i»>0 ! -n + ^(logx,)2 + £(k>g y;)

[ «=1 7 = 1

(m n

í=l ;=1

If J2" = (J^) is the 3x3 information matrix, then ^fxx = (m/N)a, J%2 =

(l-m/N)a, S3i = (m/N)d, jrx2 = 0, <fx3 = (m/N)b, J?23 = (I - m/N)b,
where

a = {t2 + Ô2(2î0 + í>o)2}/{4a04(fo + uo)2u¡),

b = (2to + ¿>o)<7o(l - r>o)/{4rJo*(f0 + ^o)2^} ,

and

d = (d¡ + 2)/{4<704(í0 + Oo)2}.

Then Rao's efficient score test is given by

R = (b'jr-X(p

where </>' = (tpx, <p2, fo). The asymptotic null-distribution of R is xx ■
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