Proceedings of the American Mathematical Society

Published by the American Mathematical Society since 1950, Proceedings of the American Mathematical Society is devoted to shorter research articles in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2024 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

A Bernstein-type inequality for the Jacobi polynomial
HTML articles powered by AMS MathViewer

by Yunshyong Chow, L. Gatteschi and R. Wong
Proc. Amer. Math. Soc. 121 (1994), 703-709
DOI: https://doi.org/10.1090/S0002-9939-1994-1209419-X

Abstract:

Let $P_n^{(\alpha ,\beta )}(x)$ be the Jacobi polynomial of degree n. For $- \frac {1}{2} \leq \alpha ,\beta \leq \frac {1}{2}$, and $0 \leq \theta \leq \pi$, it is proved that \[ {(\sin \frac {\theta }{2})^{\alpha + \frac {1}{2}}}{(\cos \frac {\theta }{2})^{\beta + \frac {1}{2}}}|P_n^{(\alpha ,\beta )}(\cos \theta )| \leq \frac {{\Gamma (q + 1)}}{{\Gamma (\frac {1}{2})}}\left ( {\begin {array}{*{20}{c}} {n + q} \\ n \\ \end {array} } \right ){N^{ - q - \frac {1}{2}}},\] where $q = \max (\alpha ,\beta )$ and $N = n + \frac {1}{2}(\alpha + \beta + 1)$. When $\alpha = \beta = 0$, this reduces to a sharpened form of the well-known Bernstein inequality for the Legendre polynomial.
References
    V. A. Antonov and K. V. Holševnikov, An estimate of the remainder in the expansion of the generating function for the Legendre polynomials (Generalization and improvement of Bernstein’s inequality), Vestnik Leningrad Univ. Math. 13 (1981), 163-166.
  • Paola Baratella, Bounds for the error term in Hilb formula for Jacobi polynomials, Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. 120 (1986), no. 5-6, 207–223 (1987) (English, with Italian summary). MR 953391
  • L. Durand, Nicholson-type integrals for products of Gegenbauer functions and related topics, Theory and application of special functions (Proc. Advanced Sem., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1975) Math. Res. Center, Univ. Wisconsin, Publ. No. 35, Academic Press, New York, 1975, pp. 353–374. MR 0409927
  • George Gasper, Formulas of the Dirichlet-Mehler type, Fractional calculus and its applications (Proc. Internat. Conf., Univ. New Haven, West Haven, Conn., 1974) Lecture Notes in Math., Vol. 457, Springer, Berlin, 1975, pp. 207–215. MR 0477185
  • D. Kershaw, Some extensions of W. Gautschi’s inequalities for the gamma function, Math. Comp. 41 (1983), no. 164, 607–611. MR 717706, DOI 10.1090/S0025-5718-1983-0717706-5
  • N. N. Lebedev, Special functions and their applications, Revised English edition, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1965. Translated and edited by Richard A. Silverman. MR 0174795
  • Lee Lorch, Alternative proof of a sharpened form of Bernstein’s inequality for Legendre polynomials, Applicable Anal. 14 (1982/83), no. 3, 237–240. MR 685160, DOI 10.1080/00036818308839426
  • Lee Lorch, Inequalities for ultraspherical polynomials and the gamma function, J. Approx. Theory 40 (1984), no. 2, 115–120. MR 732692, DOI 10.1016/0021-9045(84)90020-0
  • G. Szegö, Orthogonal polynomials, 4th ed., Colloq. Publ., vol. 23, Amer. Math. Soc., Providence, RI, 1975.
Similar Articles
  • Retrieve articles in Proceedings of the American Mathematical Society with MSC: 33C45
  • Retrieve articles in all journals with MSC: 33C45
Bibliographic Information
  • © Copyright 1994 American Mathematical Society
  • Journal: Proc. Amer. Math. Soc. 121 (1994), 703-709
  • MSC: Primary 33C45
  • DOI: https://doi.org/10.1090/S0002-9939-1994-1209419-X
  • MathSciNet review: 1209419