Borsuk’s antipodal and fixed-point theorems for set-valued maps
HTML articles powered by AMS MathViewer
- by Shiow-Yu Chang
- Proc. Amer. Math. Soc. 121 (1994), 937-941
- DOI: https://doi.org/10.1090/S0002-9939-1994-1221720-2
- PDF | Request permission
Abstract:
The purpose of this paper is to obtain the extensions of Borsuk’s antipodal and fixed-point theorems for set-valued maps.References
- Kim C. Border, Fixed point theorems with applications to economics and game theory, Cambridge University Press, Cambridge, 1985. MR 790845, DOI 10.1017/CBO9780511625756
- Arrigo Cellina, Approximation of set valued functions and fixed point theorems, Ann. Mat. Pura Appl. (4) 82 (1969), 17–24 (English, with Italian summary). MR 263046, DOI 10.1007/BF02410784
- James Dugundji and Andrzej Granas, Fixed point theory. I, Monografie Matematyczne [Mathematical Monographs], vol. 61, Państwowe Wydawnictwo Naukowe (PWN), Warsaw, 1982. MR 660439
- Shiow Yu Chang, Separation and von Neumann intersection theorems, Proc. Amer. Math. Soc. 112 (1991), no. 4, 1149–1152. MR 1070512, DOI 10.1090/S0002-9939-1991-1070512-3
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 121 (1994), 937-941
- MSC: Primary 55M20; Secondary 47H04, 47H10, 54C60, 54H25
- DOI: https://doi.org/10.1090/S0002-9939-1994-1221720-2
- MathSciNet review: 1221720