CYCLIC APPROXIMATION OF IRRATIONAL ROTATIONS

A. IWANIK

(Communicated by Andrew Bruckner)

Abstract. We prove that an irrational number \(\alpha \) admits a rational approximation \(|\alpha - p/q| = o(f(q)) \) iff the irrational rotation \(Tx = \{x + \alpha\} \) admits cyclic approximation with speed \(o(f(n)) \). As an application to earlier results we obtain that a generic Anzai skew product over every irrational rotation is rank-1 and for a.e. \(\alpha \) most skew products admit cyclic approximation with speed \(o(1/n^2 \log n) \).

1. Introduction

Let \((X, \mu)\) be a Lebesgue space. If \(\xi_n \) is a sequence of (finite measurable) partitions then we write \(\xi_n \to \varepsilon \) if for any measurable set \(A \) there exists a union \(A_n \) of cells of \(\xi_n \) such that \(\mu(A \Delta A_n) \to 0 \).

Let \(0 < f(n) \to 0 \). According to Katok and Stepin [5] we say that an invertible measure-preserving transformation \(T \) of \(X \) admits a cyclic approximation with speed \(o(f(n)) \) if there exists a sequence of partitions \(\xi_n \to \varepsilon \) and a transformation \(T_n \) cyclically permuting the cells of \(\xi_n \) such that

\[
\sum_{j=0}^{h_n-1} \mu(TC_j \Delta T_n C_j) = o(f(h_n)),
\]

where \(\xi_n = \{C_0, \ldots, C_{h_n-1}\}, C_j = T^j \xi C_0 \).

It is well known that cyclic approximation with speed \(o(1/n) \), called good cyclic approximation, implies rigidity, singular simple spectrum (see [5, 4]), and rank 1 of \(T \).

As was pointed out in [5, §1, 1 and 2]) for an a.e. irrational number \(\alpha \) the irrational rotation \(Tx = \{x + \alpha\} \) (where \(\{x\} \) denotes the fractional part of \(x \)) of the unit interval \([0, 1)\) admits a good cyclic approximation. In fact, it is easy to see that if \(|\alpha - p_n/q_n| = o(1/q_n^2) \) then \(T_n x = \{x + p_n/q_n\} \) and \(C_0 = [0, 1/q_n) \) will do.

It is our aim to prove that the speed of cyclic approximation of the rotation \(T \) is essentially as good as the speed of rational approximation of \(\alpha \) (see Theorem 1). In particular, every irrational rotation admits a good cyclic approximation (this was observed earlier by del Junco, see [2]), while for a.e. \(\alpha \) an admissible
speed is \(o(1/n^2 \log n)\) (see Corollary). Our argument is similar to that in del Junco \([1]\); now, however, we have to ensure an error term of order \(o(f(h_n))\). Instead of using cyclic partitions for rational rotations we exploit properties of continued fractions and use two disjoint \(T\)-stacks covering the interval.

2. Cyclic approximation

Let \(\alpha\) be an irrational number. We denote by \(p_n/q_n\) its continued fraction approximation. It is well known that \(|\alpha - p_n/q_n| < 1/q_n^2\). Moreover,

\[q_{n+1} \| q_n \alpha \| + q_n \| q_{n+1} \alpha \| = 1, \]

where \(\|x\|\) denotes the distance from \(x\) to the nearest integer. This formula reflects splitting the interval into two Rokhlin towers \(\zeta_n\) and \(\zeta'_n\) for the irrational rotation \(T_x = \{x + \alpha\}\). More precisely, if \(n\) is even then \(\zeta_n\), the large tower, consists of the sets \(J_j = \{ja\}, \{(q_n + j)\alpha\}\), \(j = 0, \ldots, q_n + 1\), while \(\zeta'_n\), the small one, consists of \(J'_0 = \{q_{n+1} \alpha, 1\}\) and \(J'_j = \{(q_{n+1} + j)\alpha, \{j\alpha\}\}, j = 1, \ldots, q_n - 1\).

Theorem 1. Let \(0 < f(n) \to 0\). The irrational rotation \(T_x = \{x + \alpha\}\) admits cyclic approximation with speed \(o(f(n))\) iff there exists a sequence of rational numbers \(p/q \to \alpha\) such that

\[|\alpha - p/q| = o(f(q)). \]

Proof. To prove the “if” part it clearly suffices to construct a sequence of Rokhlin towers \(\tilde{\eta}_n\) of height \(h_n\), such that the complement of the tower \(\tilde{\eta}_n\) has measure \(o(f(h_n))\). We are going to select a subsequence \(m_n\) and then construct \(\tilde{\eta}_{m_n}\) out of the pair \(\zeta_{m_n}, \zeta'_{m_n}\) by forming a new base from levels of the two towers.

Without loss of generality we may assume that the \(p/q\) are continued fraction convergents of \(\alpha\) and \(qf(q) \to 0\). Denote \(M(q) = [1/qf(q)]\). We start by choosing an arbitrary sequence \(\varepsilon_n\) decreasing to zero. By compactness, we can find integers \(K_n\) such that for every \(x \in [0, 1)\) there is a \(j\) with \(0 \leq j < K_n\) and \(T^jx \in [0, \varepsilon_n/2)\). Now choose \(N_n\) such that \(K_n/N_n < 1/n\). It is clear that for \(k_n\) large enough we have

\[N_n M(q_{k_n}) \| q_{k_n} \alpha \| < \varepsilon_n/2 \]

and \(K_n < q_{k_n}\). Finally choose \(m_n\) satisfying

\[M(q_{k_n}) q_{k_n}^2 / q_{m_n} < 1/n. \]

For the sake of convenience we may assume that the numbers \(k_n, m_n\) are even and the sequences \(k_n, m_n\) are increasing.

Now we form two new towers \(\eta_n, \eta'_n\) of height \(q_{k_n}\). We construct the base \(A\) of \(\eta_n\) by selecting certain levels of \(\zeta_{m_n}\). The first group of \(N_n M(q_{k_n})\) many levels are

\[J_0, J_{q_{k_n}}, \ldots, J_{(N_n M(q_{k_n}) - 1) q_{k_n}}. \]

Each of them is clearly contained in \([0, \varepsilon_n]\). Now by the choice of \(K_n\) we can find \(s_1\) with \(N_n M(q_{k_n}) q_{k_n} \leq s_1 < N_n M(q_{k_n}) q_{k_n} + K_n\) such that \(J_{s_1} \subset [0, \varepsilon_n/2)\). The next group of selected levels are

\[J_{s_1}, J_{s_1 + q_{k_n}}, \ldots, J_{s_1 + (N_n M(q_{k_n}) - 1) q_{k_n}}. \]
We continue up the tower in the same manner until we define the last group,

$$J_{s_p}, J_{s_p+q_{k_n}}, \ldots, J_{s_p+(M-1)q_{k_n}},$$

where $1 \leq M \leq N_n M(q_{k_n})$, with at least $q_{k_n} - 1$ but less than $2q_{k_n} + K_n - 2 < 3q_{k_n} - 2$ top levels of ζ_{m_n} left over. The set

$$A = J_0 \cup J_{q_{k_n}} \cup \cdots \cup J_{(N_n M(q_{k_n})-1)q_{k_n}}$$

$$\cup \cdots \cup J_{s_1} \cup J_{s_1+q_{k_n}} \cup \cdots \cup J_{s_1+(N_n M(q_{k_n})-1)q_{k_n}}$$

$$\cup \cdots \cup J_{s_p} \cup J_{s_p+q_{k_n}} \cup \cdots \cup J_{s_p+(M-1)q_{k_n}}$$

is the base of η_n. This new tower is contained entirely in ζ_{m_n} and only a small part of measure δ_n of the tower is not covered by η_n. Since less than K_n levels have been skipped over every $N_n M(q_{k_n})q_{k_n}$th step and less than $2q_{k_n}$ levels have been left on top, we obtain

$$\delta_n < \frac{K_n}{N_n M(q_{k_n})q_{k_n}} + \frac{2q_{k_n}}{q_{m_n}+1}.$$

Moreover, we have $A \subset [0, \varepsilon_n)$ by the choice of k_n.

We repeat the construction to form η'_n. By selecting levels as before we obtain the base

$$A' = J'_0 \cup J'_{q_{k_n}} \cup \cdots \cup J'_{(N_n M(q_{k_n})-1)q_{k_n}}$$

$$\cup \cdots \cup J'_{s_1} \cup J'_{s_1+q_{k_n}} \cup \cdots \cup J'_{s_1+(N_n M(q_{k_n})-1)q_{k_n}}$$

$$\cup \cdots \cup J'_{s_p} \cup J'_{s_p+q_{k_n}} \cup \cdots \cup J'_{s_p+(M-1)q_{k_n}}.$$

Clearly $A' \subset (-\varepsilon_n, \varepsilon_n)$; η'_n is contained in ζ'_{m_n} and covers it up to

$$\delta'_n < \frac{K_n}{N_n M(q_{k_n})q_{k_n}} + \frac{2q_{k_n}}{q_{m_n}}.$$

Finally we form a single tower $\tilde{\eta}_n$ by joining η_n with η'_n. Its base is $\tilde{A} = A \cup A'$, and the height is q_{k_n}. It covers the space up to

$$\tilde{\delta}_n = \delta_n + \delta'_n < \frac{6}{n M(q_{k_n})q_{k_n}} = o(f(q_{k_n})).$$

Moreover, $\tilde{A} \subset (-\varepsilon_n, \varepsilon_n)$, so each level of $\tilde{\eta}_n$ has diameter at most $2\varepsilon_n$ and consequently $\tilde{\eta}_n \rightarrow \varepsilon$, which ends the proof of sufficiency.

To prove the “only if” part assume there exist partitions

$$\xi_n = \{C_0, \ldots, C_{h_n-1}\} \rightarrow \varepsilon$$

and cyclic approximations T_n of T such that

$$\sum_{j=0}^{h_n-1} \mu(TC_j \Delta T_n C_j) < \tilde{f}(h_n),$$

where $\tilde{f}(n) = o(f(n))$. Let $\chi(x) = e^{2\pi i x}$ on $[0, 1)$. As $\xi_n \rightarrow \varepsilon$, we can find, for any n large enough, an approximation $\chi_n = \sum_{j=0}^{h_n-1} \lambda_j 1_{C_j}$ of χ, where $|\lambda_j| = 1$ and $\|\chi_n - \chi\| < 1/4$ in L^1. Observe that

$$\|\chi_n \circ T_n^{-1} - \chi_n \circ T^{-1}\| = \left\| \sum \lambda_j (1_{T_n C_j} - 1_{T C_j}) \right\| \leq \sum \mu(T_n C_j \Delta T C_j) < \tilde{f}(h_n).$$
For every $k \geq 1$ the same argument applies to the function $\chi_n \circ T_n^{-k}$ which is also of the form $\sum \chi_{j}^{(k)} 1_{C_j}$, so we get by induction

$$
\| \chi_n \circ T_n^{-k} - \chi_n \circ T^{-k} \| \leq \| (\chi_n \circ T_n^{-k+1}) \circ T^{-1} - (\chi_n \circ T_n^{-k+1}) \circ T^{-1} \|
+ \| \chi_n \circ T_n^{-k+1} - \chi_n \circ T^{-k+1} \|
+ \| \chi_n \circ T_n^{-k} - \chi_n \circ T^{-k} \|
+ \| \chi_n - \chi \|
\leq f(h_n) + (k-1)f(h_n) = kf(h_n).
$$

Now by the triangle inequality we obtain

$$|e^{2\pi i k \alpha} - 1| = \| \chi \circ T^{-k} - \chi \|
\leq \| \chi \circ T^{-k} - \chi_n \circ T^{-k} \| + \| \chi_n \circ T^{-k} - \chi_n \circ T^{-k} \|
+ \| \chi_n \circ T^{-k} - \chi_n \| + \| \chi_n - \chi \|
\leq k f(h_n) + \| \chi_n \circ T^{-k} - \chi_n \| + 1/2.
$$

In particular, for $k = lh_n$, $l = 1, 2, \ldots$, we have $|e^{2\pi i l h_n \alpha} - 1| < lh_n f(h_n) + 1/2$, which implies $\| h_n \alpha \| < lh_n f(h_n)/4 + 1/8$. Notice that $\| x \| = l \| x \|$ whenever $\| x \| \leq 1/2l$. Consequently, by choosing $1/4 \| h_n \alpha \| \leq l \leq 1/2 \| h_n \|$ we get on dividing by l that $\| h_n \alpha \| < lh_n f(h_n)/2$. Therefore, there exist integers p_n such that $|\alpha - p_n/h_n| < f(h_n)/2 = o(f(h_n))$, which ends the proof of the theorem.

It is well known that for every irrational number the rational approximation of Theorem 1 is satisfied with $f(n) = 1/n$ (and even c_n/n^2 for any $c_n \to \infty$), so every irrational rotation admits good cyclic approximation (see [2]). It is also clear that if α has unbounded partial quotients then we may take $f(n) = 1/n^2$. An even better approximation is possible for almost all numbers α (which also form a residual subset of the unit interval).

Let $g(x) > 0$ for $x > 0$ be such that the function $xg(x)$ is nonincreasing and $\int_0^\infty g(x) \, dx = \infty$. Then the inequality $|\alpha - p/q| < g(q)/q$ has infinitely many solutions for a.e. α (see [6, Theorem 32]). Consequently, the conditions of Theorem 1 are satisfied if $g(n)/n = o(f(n))$. In particular, if $g(x) = (x \log x \log \log x)^{-1}$ for $x > 3$ then $g(n)/n = o(1/n^2 \log n)$. We have obtained the following

Corollary. For a.e. α the rotation T admits cyclic approximation with speed $o(1/n^2 \log n)$.

3. Application

Let G denote a compact metrizable monothetic group with normalized Haar measure. If T is an invertible measure-preserving transformation of X and $\phi : X \to G$ a measurable function (called cocycle), we can define a skew product extension T_ϕ of T acting on the product space by $T_\phi(x, g) = (Tx, g + \phi(x))$. Denote by Φ the space of all cocycles endowed with topology of convergence in measure (cocycles that are equal a.e. are identified). It has been shown in [3] that if T admits an approximation with speed $o(f(n))$ where $\sup f(n)/f(2n) < \infty$ then, for generic ϕ, the same is true of T_ϕ. Here “generic” means from a residual subset of Φ. In particular, T_ϕ is generically rank-1 if $f(n) = 1/n$ (similar results on simple spectrum have been obtained earlier by Robinson [7, 8]).
In the case where $X = G = T$, the circle group, and T an irrational rotation of T, T_ϕ is referred to as Anzai skew product; in multiplicative notation

$$T_\phi(z, w) = (e^{2\pi i \alpha} z, \phi(z)w).$$

The following result, which is now a consequence of Theorem 1 and Corollary, is an improved version of Corollary 2 in [3].

Theorem 2. For every irrational rotation generic Anzai skew products have good cyclic approximation. In particular, they are rank-1. Moreover, for a.e. rotation a generic Anzai skew product admits cyclic approximation with speed $o(1/n^2 \log n)$.

REFERENCES

INSTITUTE OF MATHEMATICS, TECHNICAL UNIVERSITY OF WROCLAW, 50-370 WROCLAW, POLAND

E-mail address: iwanik@math.impwr.wroc.edu.pl