ACCP IN POLYNOMIAL RINGS: A COUNTEREXAMPLE

WILLIAM J. HEINZER AND DAVID C. LANTZ

(Communicated by Wolmer V. Vasconcelos)

Abstract. We describe an example showing that ACCP need not extend from a ring to a polynomial ring over it.

A ring R (always commutative with unity) is said to satisfy the ascending chain condition on principal ideals (ACCP) if, for any infinite ascending chain of principal ideals $a_1R \subseteq a_2R \subseteq \cdots$, there is a positive integer n for which $a_nR = a_{n+1}R = \cdots$ (cf. [Gi]). This property has been studied, even in the case of a noncommutative ring, in a number of papers, for example, [AAZ, AN, Gr, N, R]. It is well known and easy to see that if R is an integral domain satisfying ACCP, then for any family X of indeterminates, the polynomial ring $R[X]$ also satisfies ACCP. (In [Gr], where it seems to be asserted that this holds for any ring, there appears to be a tacit hypothesis of domain.)

Example. A ring R that satisfies ACCP but for which the polynomial ring $R[x]$, in a single indeterminate x, does not satisfy ACCP. Let k be a field and A_1, A_2, \ldots be indeterminates over k, and set

$$S = k[A_1, A_2, \ldots] / (\{A_n(A_{n-1} - A_n) : n \geq 2\})k[A_1, A_2, \ldots].$$

Denote by a_n the image of A_n in S and by R the localization of S at the ideal $(a_1, a_2, \ldots)S$. We note two facts about these rings: (1) the elements of S that become units in R are nonzerodivisors, so R contains (an isomorphic copy of) S; and (2) in S, no power of a_{n-1} annihilates the difference $a_n - a_{n-1}$. For (1), note that, as the factor ring of a polynomial ring over k by a homogeneous ideal (in total degree in the A_n's), S is a graded ring. Thus, we can refer to the order of an element of S, i.e., the degree of the smallest-degree nonzero term in that element; and for elements f, g in S, $\text{ord}(fg) \geq \text{ord}(f) + \text{ord}(g)$. Since an element outside $(a_1, a_2, \ldots)S$ has unit degree-0 term, its product with any
nonzero element \(g \) of \(S \) has the same order as \(g \); in particular, the product is not zero.

For (2), we regard \(S \) as the limit of the rings \(S_n \) where \(S_1 = k[a_1] \) and
\[
S_n = S_{n-1}[a_n] = S_{n-1}[A_n]/A_n(a_{n-1} - A_n)S_{n-1}[A_n]
\]
for \(n \geq 2 \). Since \(A_n(a_{n-1} - A_n) \) is the negative of a monic polynomial of degree 2, \(S_n \) is a free module over \(S_{n-1} \) on the generators \(1, a_n \). Thus, \(S_{n-1} \) is a subring of \(S_n \), and a power of \(a_{n-1} \) annihilates \(a_{n-1} - a_n \) only if \(a_{n-1} \) is nilpotent. Assume \(a_{n-1}^m = 0 \) where, without loss of generality, \(m > n - 2 \). Then, using the defining relations of \(S \), we have \(a_{n-1}^m = a_1^{m-n+2}a_2a_3\cdots a_{n-1} \). Since each \(a_k \) is an element of a free basis over \(S_{k-1} \), we conclude that \(a_1 \) is nilpotent. But that is a contradiction, since \(S_1 \) is (isomorphic to) the polynomial ring in the indeterminate \(a_1 \) over \(k \).

To see that \(R \) satisfies ACCP, we again use the grading on \(S \): Suppose we have \(f_1R \subset f_2R \), where \(f_1, f_2 \) are chosen from \(S \). Then since elements of \(S \) of order 0 are units in \(R \), we must have elements \(g, h \) in \(S \) for which \(\text{ord}(g) > 0, \text{ord}(h) = 0 \), and \(f_2(g/h) = f_1 \) in \(R \), so that in \(S \), using (1) above, we have \(f_1h = f_2g \). It follows that \(\text{ord}(f_1) > \text{ord}(f_2) \). Since orders in \(S \) are bounded below by 0, it follows that \(R \) satisfies ACCP.

Now in \(R[x] \), we have
\[
(a_nx + 1)((a_{n-1} - a_n)x + 1) = a_{n-1}x + 1
\]
for each \(n \geq 2 \), so
\[
(a_1x + 1)R[x] \subseteq (a_2x + 1)R[x] \subseteq \cdots.
\]

To see that these containments are proper, suppose by way of contradiction that, for some \(n \geq 2 \), \((a_{n-1}x + 1)b(x) = a_nx + 1 \) where \(b(x) \) is the polynomial \(b(x) = b_0 + b_1x + \cdots \). Then we must have \(b_0 = 1 \) and by induction \(b_m = (-1)^{m-1}a_{n-1}^{m-1}(a_n - a_{n-1}) \) for each \(m > 0 \). By (2), all the \(b_m \) are nonzero, so \(b(x) \) is not a polynomial, which is the desired contradiction.

Remark. It is shown in [HL, (3.8) and (3.9)] that if \(R \) is a quasilocal ring having the property that the annihilator of each finitely generated ideal in \(R \) has only finitely many minimal primes or if \(R \) is of dimension zero, then ACCP extends to a polynomial ring over \(R \). The \(R \) in the example above is quasilocal of dimension one and has a countably infinite number of minimal primes. Moreover, by using [HL, Proposition 2.1] it follows that \(R \) satisfies the ascending chain condition on \(n \)-generated ideals for every positive integer \(n \) (i.e., \(R \) has “pan-acc”).

REFERENCES

Department of Mathematics, Purdue University, West Lafayette, Indiana 47907-1395
E-mail address: heinzer@math.purdue.edu

Department of Mathematics, Colgate University, 13 Oak Drive, Hamilton, New York 13346-1398
E-mail address: dlantz@center.colgate.edu