A sharp estimate on the Bergman kernel of a pseudoconvex domain
HTML articles powered by AMS MathViewer
- by Siqi Fu
- Proc. Amer. Math. Soc. 121 (1994), 979-980
- DOI: https://doi.org/10.1090/S0002-9939-1994-1243167-5
- PDF | Request permission
Abstract:
In this note we obtain a sharp estimate of the Bergman kernels near ${\mathcal {C}^2}$ boundary points of pseudoconvex domains by induction on the dimension and a theorem of Ohsawa-Takegoshi.References
- Stefan Bergman, The kernel function and conformal mapping, Second, revised edition, Mathematical Surveys, No. V, American Mathematical Society, Providence, R.I., 1970. MR 0507701
- David Catlin, Necessary conditions for subellipticity of the $\bar \partial$-Neumann problem, Ann. of Math. (2) 117 (1983), no. 1, 147–171. MR 683805, DOI 10.2307/2006974
- Takeo Ohsawa and Kensh\B{o} Takegoshi, On the extension of $L^2$ holomorphic functions, Math. Z. 195 (1987), no. 2, 197–204. MR 892051, DOI 10.1007/BF01166457
- Peter Pflug, Quadratintegrable holomorphe Funktionen und die Serre-Vermutung, Math. Ann. 216 (1975), no. 3, 285–288 (German). MR 382717, DOI 10.1007/BF01430969
- Henri Skoda, Application des techniques $L^{2}$ à la théorie des idéaux d’une algèbre de fonctions holomorphes avec poids, Ann. Sci. École Norm. Sup. (4) 5 (1972), 545–579 (French). MR 333246
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 121 (1994), 979-980
- MSC: Primary 32H10; Secondary 32F15
- DOI: https://doi.org/10.1090/S0002-9939-1994-1243167-5
- MathSciNet review: 1243167