On the dimensional properties of Stone-Čech remainder of $P_ 0$-spaces
HTML articles powered by AMS MathViewer
- by H. Attia
- Proc. Amer. Math. Soc. 121 (1994), 1245-1249
- DOI: https://doi.org/10.1090/S0002-9939-1994-1156462-5
- PDF | Request permission
Abstract:
A space X is called a ${P_0}$-space if there exists a perfect mapping f from X onto a metric space Y such that $\dim f = \sup \{ {f^{ - 1}}(y):y \in Y\} = 0$. We prove that the ${P_0}$-space X is almost weakly infinite dimensional iff the remainder $\beta X\backslash X$ of the Stone-Čech compactification $\beta X$ of X is A-weakly infinite dimensional. Furthermore we prove that $\Delta (\beta X\backslash X = {\text {ind}}(\beta X\backslash X) = {\text {Ind}}(\beta X\backslash X) = \dim (\beta X\backslash X)$ for the ${P_0}$-space X.References
- P. S. Alexcandroff and B. A. Pasynkov, Introduction to dimension theory, Nauka, Moscow, 1973. (Russian)
- A. Arhangel′skiĭ, The factorization of mappings by weight and dimension, Dokl. Akad. Nauk SSSR 174 (1967), 1243–1246 (Russian). MR 0216472
- A. V. Arhangel′skiĭ, A class of spaces which contains all metric and all locally compact spaces, Mat. Sb. (N.S.) 67 (109) (1965), 55–88 (Russian). MR 0190889
- A. V. Arhangel′skiĭ, Open and close-to-open mappings. Relations among spaces, Trudy Moskov. Mat. Obšč. 15 (1966), 181–223 (Russian). MR 0206909 M. M. Čoban, Topological structure of subsets of topological groups and their factor spaces, Cb. Mat. Recearsh Keshenev, Science, 44 (1977), 117-163. (Russian)
- M. M. Čoban and H. Attia, On the dimension of remainders of extensions of normal spaces, Topology Appl. 36 (1990), no. 2, 97–109. Seminar on General Topology and Topological Algebra (Moscow, 1988/1989). MR 1068163, DOI 10.1016/0166-8641(90)90002-J R. Engleking, Dimension theory, Warszawa, Oxford and New York, 1978.
- Melvin Henriksen and J. R. Isbell, Some properties of compactifications, Duke Math. J. 25 (1958), 83–105. MR 96196
- Stoyan Ĭ. Nedev, Selection and factorization theorems for set-valued mappings, Serdica 6 (1980), no. 4, 291–317 (1981). MR 644284
- B. A. Pasynkov, Factorization theorems in dimension theory, Uspekhi Mat. Nauk 36 (1981), no. 3(219), 147–175, 256 (Russian). MR 622723
- B. A. Pasynkov, The dimension of spaces with a bicompact transformation group, Uspehi Mat. Nauk 31 (1976), no. 5(191), 112–120 (Russian). MR 0445470
- V. I. Ponomarev, Paracompacta: their projection spectra and continuous mappings, Mat. Sb. (N.S.) 60 (102) (1963), 89–119 (Russian). MR 0152980
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 121 (1994), 1245-1249
- MSC: Primary 54F45; Secondary 54D40, 54E18
- DOI: https://doi.org/10.1090/S0002-9939-1994-1156462-5
- MathSciNet review: 1156462