Multipliers with closed range on regular commutative Banach algebras
HTML articles powered by AMS MathViewer
- by Pietro Aiena and Kjeld B. Laursen
- Proc. Amer. Math. Soc. 121 (1994), 1039-1048
- DOI: https://doi.org/10.1090/S0002-9939-1994-1185257-1
- PDF | Request permission
Abstract:
Conditions equivalent with closure of the range of a multiplier T, defined on a commutative semisimple Banach algebra A, are studied. A main result is that if A is regular then ${T^2}A$ is closed if and only if T is a product of an idempotent and an invertible. This has as a consequence that if A is also Tauberian then a multiplier with closed range is injective if and only if it is surjective. Several aspects of Fredholm theory and Kato theory are covered. Applications to group algebras are included.References
- Pietro Aiena, Multipliers and projections on semisimple commutative Banach algebras, Proceedings of the Second International Conference in Functional Analysis and Approximation Theory (Acquafredda di Maratea, 1992), 1993, pp. 155–165. MR 1295257
- Bruce A. Barnes, G. J. Murphy, M. R. F. Smyth, and T. T. West, Riesz and Fredholm theory in Banach algebras, Research Notes in Mathematics, vol. 67, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1982. MR 668516
- S. R. Caradus, W. E. Pfaffenberger, and Bertram Yood, Calkin algebras and algebras of operators on Banach spaces, Lecture Notes in Pure and Applied Mathematics, Vol. 9, Marcel Dekker, Inc., New York, 1974. MR 0415345
- M. Dutta and U. B. Tewari, On multipliers of Segal algebras, Proc. Amer. Math. Soc. 72 (1978), no. 1, 121–124. MR 493166, DOI 10.1090/S0002-9939-1978-0493166-7 J. Eschmeier, K. B. Laursen, and M. M. Neumann, Multipliers with natural local spectra on commutative Banach algebras, submitted.
- I. Glicksberg, When is $\mu \ast L\,_{1}$ closed?, Trans. Amer. Math. Soc. 160 (1971), 419–425. MR 288523, DOI 10.1090/S0002-9947-1971-0288523-6
- B. Host and F. Parreau, Sur un problème de I. Glicksberg: les idéaux fermés de type fini de $M(G)$, Ann. Inst. Fourier (Grenoble) 28 (1978), no. 3, x, 143–164 (French, with English summary). MR 511819
- Herbert Kamowitz, On compact multipliers of Banach algebras, Proc. Amer. Math. Soc. 81 (1981), no. 1, 79–80. MR 589140, DOI 10.1090/S0002-9939-1981-0589140-2
- Ronald Larsen, An introduction to the theory of multipliers, Die Grundlehren der mathematischen Wissenschaften, Band 175, Springer-Verlag, New York-Heidelberg, 1971. MR 0435738
- Kjeld Bagger Laursen, Multipliers and local spectral theory, Functional analysis and operator theory (Warsaw, 1992) Banach Center Publ., vol. 30, Polish Acad. Sci. Inst. Math., Warsaw, 1994, pp. 223–236. MR 1285609
- Kjeld B. Laursen and Michael M. Neumann, Local spectral properties of multipliers on Banach algebras, Arch. Math. (Basel) 58 (1992), no. 4, 368–375. MR 1152625, DOI 10.1007/BF01189927 T. J. Ransford, private communication.
- Walter Rudin, Fourier analysis on groups, Interscience Tracts in Pure and Applied Mathematics, No. 12, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0152834
- Ch. Schmoeger, Ein Spektralabbildungssatz, Arch. Math. (Basel) 55 (1990), no. 5, 484–489 (German). MR 1079997, DOI 10.1007/BF01190270
- Yves Zaïem, Opérateurs de convolution d’image fermée et unités approchées, Bull. Sci. Math. (2) 99 (1975), no. 2, 65–74. MR 435733
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 121 (1994), 1039-1048
- MSC: Primary 46J05; Secondary 43A22, 47B48
- DOI: https://doi.org/10.1090/S0002-9939-1994-1185257-1
- MathSciNet review: 1185257