The unitability of $1$-prime lattice-ordered rings with squares positive
HTML articles powered by AMS MathViewer
- by Jing Jing Ma
- Proc. Amer. Math. Soc. 121 (1994), 991-997
- DOI: https://doi.org/10.1090/S0002-9939-1994-1186988-X
- PDF | Request permission
Abstract:
It is shown that an l-prime lattice-ordered ring with squares positive and an f-superunit can be embedded in a unital l-prime lattice-ordered ring with squares positive.References
- Stuart A. Steinberg, On the unitability of a class of partially ordered rings that have squares positive, J. Algebra 100 (1986), no. 2, 325–343. MR 840580, DOI 10.1016/0021-8693(86)90080-3
- Stuart A. Steinberg, Unital $l$-prime lattice-ordered rings with polynomial constraints are domains, Trans. Amer. Math. Soc. 276 (1983), no. 1, 145–164. MR 684499, DOI 10.1090/S0002-9947-1983-0684499-6
- D. G. Johnson, A structure theory for a class of lattice-ordered rings, Acta Math. 104 (1960), 163–215. MR 125141, DOI 10.1007/BF02546389
- Paul Conrad, Some structure theorems for lattice-ordered groups, Trans. Amer. Math. Soc. 99 (1961), 212–240. MR 121405, DOI 10.1090/S0002-9947-1961-0121405-2
- Jing Jing Ma, On lattice-ordered rings with polynomial constraints, J. Math. Res. Exposition 11 (1991), no. 3, 325–331 (Chinese, with English summary). MR 1123387
- Stuart A. Steinberg, On lattice-ordered rings in which the square of every element is positive, J. Austral. Math. Soc. Ser. A 22 (1976), no. 3, 362–370. MR 427198, DOI 10.1017/s1446788700014804
- Melvin Henriksen and J. R. Isbell, Lattice-ordered rings and function rings, Pacific J. Math. 12 (1962), 533–565. MR 153709, DOI 10.2140/pjm.1962.12.533
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 121 (1994), 991-997
- MSC: Primary 06F25; Secondary 16W80
- DOI: https://doi.org/10.1090/S0002-9939-1994-1186988-X
- MathSciNet review: 1186988